Skip to main content
Log in

Thermal Atomic Layer Deposition of TiNx Using TiCl4 and N2H4

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

Atomic layer deposition (ALD) of titanium nitride (TiN) is carried out by the alternate surface reactions of titanium tetrachloride (TiCl4) and hydrazine (N2H4) at temperatures ranging from 150 to 350°C. The film deposition process is monitored in situ by quartz piezoelectric microweighing (QPM) and Fourier transform infrared spectroscopy (FTIRS). The QPM data detects the self-limiting character of the surface reactions between TiCl4 and N2H4, as well as the linearity of the film growth with the number of cycles at 200 and 225°C. The growth constant of the TiNx film is found to be 0.36 Å/cycle at the optimum growth temperature of 275°C. The roughness and density of the 116.3-Å-thick film deposited at this temperature are determined to be 7.2 Å and 87.5% (of the TiN volume’s density), respectively. The X-ray photoelectron spectroscopy (XPS) analysis of these films shows the content of chlorine impurities to be below the instrument’s sensitivity limit (<0.2 аt %) and the oxygen content to be near 14 at %. The X-ray diffraction measurements indicate the cubic polycrystalline structure of these films. The FTIRS method is used for surface deposition chemistry at 200 and 275°C. The possibility of depositing titanium-aluminum nitride (TiAlxNy) films by ALD with trimethylaluminum (TMA) as a precursor is also shown. Films deposited at 275°С are found to contain oxygen and chlorine impurities near 3 and 4 at %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. George, S.M., Atomic layer deposition: an overview, Chem. Rev., 2010, vol. 110, pp. 111–131.

    Article  Google Scholar 

  2. Malygin, A.A. et al., From V.B. Aleskovskii’s ‘Framework’ hypothesis to the method of molecular layering/atomic layer deposition, Chem. Vapor Deposit., 2015, vol. 21, nos. 10–12, pp. 216–240.

    Article  Google Scholar 

  3. International Technology Roadmap for Semiconductors, 2007. http://www.itrs.net/.

  4. Kim, H., Atomic layer deposition of metal and nitride thin films: current research efforts and applications for semiconductor device processing, J. Vacuum Sci. Technol., B, 2003, vol. 21, no. 6, pp. 2231–2261.

    Article  Google Scholar 

  5. Zaera, F., The surface chemistry of thin film atomic layer deposition (ALD) processes for electronic device manufacturing, J. Mater. Chem., 2008, vol. 18, no. 30, pp. 3521–3526.

    Article  Google Scholar 

  6. Ahn, C.H. et al., Characteristics of TiN thin films grown by ALD using TiCl4 and NH3, Met. Mater. Int., 2001, vol. 7, no. 6, pp. 621–625.

    Article  Google Scholar 

  7. Satta, A. et al., Growth mechanism and continuity of atomic layer deposited TiN films on thermal SiO2, J. Appl. Phys., 2002, vol. 92, no. 12, pp. 7641–7646.

    Article  Google Scholar 

  8. Juppo, M., Rahtu, A., and Ritala, M., In situ mass spectrometry study on surface reactions in atomic layer deposition of TiN and Ti(Al)N thin films, Chem. Mater., 2002, vol. 14, no. 1, pp. 281–287.

    Article  Google Scholar 

  9. Kim, J. et al., Physical properties of highly conformal TiN thin films grown by atomic layer deposition, Jpn. J. Appl. Phys., Part I, 2003, vol. 42, no. 3, pp. 1375–1379.

    Google Scholar 

  10. Kim, J. et al., Properties including step coverage of TiN thin films prepared by atomic layer deposition, Appl. Surf. Sci., 2003, vol. 210, nos. 3–4, pp. 231–239.

    Article  Google Scholar 

  11. Tiznado, H. and Zaera, F., Surface chemistry in the atomic layer deposition of TiN films from TiCl4 and ammonia, J. Phys. Chem., B, 2006, vol. 110, no. 27, pp. 13491–13498.

    Article  Google Scholar 

  12. Elers, K.E. et al., TiCl4 as a precursor in the TiN deposition by ALD and PEALD, J. Electrochem. Soc., 2005, vol. 152, no. 8, pp. G589–G593.

    Article  Google Scholar 

  13. Hiltunen, L. et al., Nitrides of titanium, niobium, tantalum and molybdenum grown as thin-films by the atomic layer epitaxy method, Thin Solid Films, 1988, vol. 166, nos. 1–2, pp. 149–154.

    Article  Google Scholar 

  14. Ritala, M. et al., Atomic layer epitaxy growth of TiN thin films from TiI4 and NH3, J. Electrochem. Soc., 1998, vol. 145, no. 8, pp. 2914–2920.

    Article  Google Scholar 

  15. Ritala, M. et al., Atomic layer epitaxy growth of TiN thin-films, J. Electrochem. Soc., 1995, vol. 142, no. 8, pp. 2731–2737.

    Article  Google Scholar 

  16. Ritala, M. et al., Effects of intermediate zinc pulses on properties of TiN and NbN films deposited by atomic layer epitaxy, Appl. Surf. Sci., 1997, vol. 120, nos. 3–4, pp. 199–212.

    Article  Google Scholar 

  17. Juppo, M. et al., Trimethylaluminum as a reducing agent in the atomic layer deposition of Ti(Al)N thin films, Chem. Vapor Deposit., 2001, vol. 7, no. 5, pp. 211–217.

    Article  Google Scholar 

  18. Heil, S.B.S. et al., Low-temperature deposition of TiN by plasma-assisted atomic layer deposition, J. Electrochem. Soc., 2006, vol. 153, no. 11, pp. G956–G965.

    Article  Google Scholar 

  19. Min, J.S. et al., Atomic layer deposition of TiN films by alternate supply of tetrakis(ethylmethylamino)-titanium and ammonia, Jpn. J. Appl. Phys., Part I, 1998, vol. 37, no. 9A, pp. 4999–5004.

    Google Scholar 

  20. Kim, H.K. et al., Metalorganic atomic layer deposition of TiN thin films using TDMAT and NH3, J. Korean Phys. Soc., 2002, vol. 41, no. 5, pp. 739–744.

    Google Scholar 

  21. Elam, J.W. et al., Surface chemistry and film growth during TiN atomic layer deposition using TDMAT and NH3, Thin Solid Films, 2003, vol. 436, no. 2, pp. 145–156.

    Article  Google Scholar 

  22. Assaud, L. et al., Highly-conformal TiN thin films grown by thermal and plasma-enhanced atomic layer deposition, ECS J. Solid State Sci. Technol., 2014, vol. 3, no. 7, pp. P253–P258.

    Article  Google Scholar 

  23. Kim, J.Y. et al., Remote plasma enhanced atomic layer deposition of tin thin films using metalorganic precursor, J. Vacuum Sci. Technol. A, 2004, vol. 22, no. 1, pp. 8–12.

    Article  Google Scholar 

  24. Kim, J.Y. et al., Remote plasma-enhanced atomic-layer deposition of tin by using TDMAT with a NH3 plasma, J. Korean Phys. Soc., 2004, vol. 45, no. 6, pp. 1639–1643.

    Google Scholar 

  25. Heil, S.B.S. et al., Plasma-assisted atomic layer deposition of tin monitored by in situ spectroscopic ellipsometry, J. Vacuum Sci. Technol. A, 2005, vol. 23, no. 4, pp. L5–L8.

    Article  Google Scholar 

  26. Juppo, M., Ritala, M., and Leskela, M., Use of 1,1-dimethylhydrazine in the atomic layer deposition of transition metal nitride thin films, J. Electrochem. Soc., 2000, vol. 147, no. 9, pp. 3377–3381.

    Article  Google Scholar 

  27. Park, D.G. and Kim, T.K., Effects of fluorine and chlorine on the gate oxide integrity of W/TiN/SiO2/Si metal-oxide-semiconductor structure, Thin Solid Films, 2005, vol. 483, nos. 1–2, pp. 232–238.

    Article  Google Scholar 

  28. Luoh, T. et al., TiCl4 barrier process engineering in semiconductor manufacturing, Coatings, 2016, vol. 6, no. 1.

  29. Abdulagatov, A.I., Anderson, V.R., Cavanagh, A.S., Wang, W., and George, S.M., Atomic layer deposition of titanium nitride using titanium tetrachloride and hydrazine, in Proceedings of the AVS 57th International Symposium and Exhibition, 2010, Albuquerque, New Mexico, USA.

  30. Abdulagatov, A.I., Growth, characterization and post-processing of inorganic and hybrid organic-inorganic thin films deposited using atomic and molecular layer deposition techniques, Dissertation, Boulder, CO: Chem. Dep., Univ. Colorado, 2012, p. 335.

  31. Hinckley, A. and Muscat, A., Atomic layer deposition of tin below 600 K using N2H4, Solid State Phenom., 2018, vol. 282, pp. 232–237.

    Article  Google Scholar 

  32. Wolf, S. et al., Low temperature thermal ALD TaNx and TiNx films from anhydrous N2H4, Applied Surface Science, 2018, vol. 462, pp. 1029–1035.

    Article  Google Scholar 

  33. Scheper, J.T. et al., Low-temperature deposition of titanium nitride films from dialkylhydrazine-based precursors, Mater. Sci. Semicond. Proces., 1999, vol. 2, no. 2, pp. 149–157.

    Article  Google Scholar 

  34. Winter, C.H., McKarns, P.J., and Scheper, J.T., Precursors for the chemical vapor deposition of titanium nitride and titanium aluminum nitride films, Chem. Asp. Electron. Ceram. Process., 1998, vol. 495, pp. 95–106.

    Google Scholar 

  35. HSC Chemistry, Vers. 5.1.

  36. Snyder, M.Q., et al., An infrared study of the surface chemistry of titanium nitride atomic layer deposition on silica from TiCl4 and NH3, Thin Solid Films, 2006, vol. 514, nos. 1–2, pp. 97–102.

    Article  Google Scholar 

  37. Fujieda, S., Mizuta, M., and Matsumoto, Y., Low-temperature metalorganic chemical vapour deposition of AIN for surface passivation of GaAs, Adv. Mater. Opt. Electron., 1996, vol. 6, no. 3, pp. 127–134.

    Article  Google Scholar 

  38. Fujieda, S., Mizuta, M., and Matsumoto, Y., Growth-characterization of low-temperature mocvd gan, comparison between N2H4 and NH3, Jpn. J. Appl. Phys., Part I, 1987, vol. 26, no. 12, pp. 2067–2071.

    Google Scholar 

  39. Morishita, S., Sugahara, S., and Matsumura, M., Atomic-layer chemical-vapor-deposition of silicon-nitride, Appl. Surf. Sci., 1997, vol. 112, pp. 198–204.

    Article  Google Scholar 

  40. Burton, B.B., Lavoie, A.R., and George, S.M., Tantalum nitride atomic layer deposition using (tert-butylimido) tris(diethylamido) tantalum and hydrazine, J. Electrochem. Soc., 2008, vol. 155, no. 7, pp. D508–D516.

    Article  Google Scholar 

  41. Abdulagatov, A.I. et al., Atomic layer deposition of aluminum nitride and oxynitride on silicon using tris(dimethylamido)aluminum, ammonia, and water, Russ. J. Gen. Chem., 2018, vol. 88, no. 8, pp. 1699–1706.

    Article  Google Scholar 

  42. Abdulagatov, A.I. et al., Atomic layer deposition of aluminum nitride using tris(diethylamido)aluminum and hydrazine or ammonia, Russ. Microelectron., 2018, vol. 47, no. 2, pp. 118–130.

    Article  Google Scholar 

  43. Vogt, K.W., Naugher, L.A., and Kohl, P.A., Low-temperature nitridation of transition-metals with hydrazine, Thin Solid Films, 1995, vol. 256, nos. 1–2, pp. 106–115.

    Article  Google Scholar 

  44. Petrov, I. et al., Interfacial reactions in epitaxial Al/Ti1–xAlxN (0-less-than-or-equal-to-x-less-than-or-equal-to-0.2) model diffusion-barrier structures, J. Vacuum Sci. Technol. A, 1993, vol. 11, no. 1, pp. 11–17.

    Article  Google Scholar 

  45. Stuber, M., Hultman, L., and Matthews, A., Special issue of surface and coatings technology on 25 years of TiAlN hard coatings in research and industry preface, Surf. Coat. Technol., 2014, vol. 257, pp. 1–2.

    Article  Google Scholar 

  46. Abrikosov, I.A. et al., Phase stability and elasticity of TiAlN, Materials, 2011, vol. 4, no. 9, pp. 1599–1618.

    Article  Google Scholar 

  47. Barshilia, H.C. et al., Optical properties and thermal stability of TiAlN/AlON tandem absorber prepared by re active DC/RF magnetron sputtering, Sol. Energy Mater. Sol. Cells, 2008, vol. 92, no. 11, pp. 1425–1433.

    Article  Google Scholar 

  48. Biswas, A. et al., Spectroscopic ellipsometric characterization of TiAlN/TiAlON/Si4N3 tandem absorber for solar selective applications, Appl. Surf. Sci., 2008, vol. 254, no. 6, pp. 1694–1699.

    Article  Google Scholar 

  49. Koo, J. et al., Study on the characteristics of TiAlN thin film deposited by atomic layer deposition method, J. Vacuum Sci. Technol. A, 2001, vol. 19, no. 6, pp. 2831–2834.

    Article  Google Scholar 

  50. Kim, J.Y. et al., Compositional variations of TiAlN films deposited by metalorganic atomic layer deposition method, Jpn. J. Appl. Phys., Part I, 2002, vol. 41, no. 2A, pp. 562–565.

    Google Scholar 

  51. Schmidt, E.W., Hydrazine and its Derivatives: Preparation, Properties, Applications, Hoboken: Wiley-Interscience, 2001.

    Google Scholar 

  52. Elam, J.W., Groner, M.D., and George, S.M., Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition, Rev. Sci. Instrum., 2002, vol. 73, no. 8, pp. 2981–2987.

    Article  Google Scholar 

  53. Goldstein, D.N., McCormick, J.A., and George, S.M., Al2O3 atomic layer deposition with trimethylaluminum and ozone studied by in situ transmission FTIR spectroscopy and quadrupole mass spectrometry, J. Phys. Chem. C, 2008, vol. 112, no. 49, pp. 19530–19539.

    Article  Google Scholar 

  54. Satta, A. et al., Initial growth mechanism of atomic layer deposited TiN, Appl. Phys. Lett., 2004, vol. 84, no. 22, pp. 4571–4573.

    Article  Google Scholar 

  55. Murarka, S.P., Multilevel interconnections for ULSI and GSI era, Mater. Sci. Eng. R, 1997, vol. 19, nos. 3–4, pp. 87–151.

    Article  Google Scholar 

  56. Sun, J.N. et al., Probing diffusion barrier integrity on porous silica low-k thin films using positron annihilation lifetime spectroscopy, J. Appl. Phys., 2001, vol. 89, no. 9, pp. 5138–5144.

    Article  Google Scholar 

  57. Elam, J.W. et al., Atomic layer deposition of In2O3 using cyclopentadienyl indium: a new synthetic route to transparent conducting oxide films, Chem. of Mater., 2006, vol. 18, no. 15, pp. 3571–3578.

    Article  Google Scholar 

  58. Rocklein, M.N. and George, S.M., Temperature-induced apparent mass changes observed during quartz crystal microbalance measurements of atomic layer deposition, Anal. Chem., 2003, vol. 75, no. 19, pp. 4975–4982.

    Article  Google Scholar 

  59. Heubusch, H.P. and Pugmire, T.K., The compatibility of stainless steels with nitrogen tetroxide and hydrazine, AIAA Paper, 1990, no. A90-43356, p. 36.

  60. Hanratty, T.J. et al., Thermal decomposition of hydrazine vapor in silica vessel, Ind. Eng. Chem., 1951, vol. 43, no. 5, pp. 1113–1116.

    Article  Google Scholar 

  61. Jeon, H. et al., Study on the characteristics of TiN thin film deposited by the atomic layer chemical vapor deposition method, J. Vacuum Sci. Technol. A, 2000, vol. 18, no. 4, pp. 1595–1598.

    Article  Google Scholar 

  62. Juppo, M. et al., Atomic layer deposition of titanium nitride thin films using tert-butylamine and allylamine as reductive nitrogen sources, Electrochem. Solid State Lett., 2002, vol. 5, no. 1, pp. C4–C6.

    Article  Google Scholar 

  63. Kim, J.Y. et al., Comparison of TiN films deposited using tetrakisdimethylaminotitanium and tetrakisdiethylaminotitanium by the atomic layer deposition method, Jpn. J. Appl. Phys., Part I, 2003, vol. 42, no. 7A, pp. 4245–4248.

    Google Scholar 

  64. Kim, J.Y. et al., Comparison of TiN and TiAlN as a diffusion barrier deposited by atomic layer deposition, J. Korean Phys. Soc., 2002, vol. 40, no. 1, pp. 176–179.

    Google Scholar 

  65. CRC Handbook of Chemistry and Physics, Lide, D.R., Ed., Boca Raton, FL: CRC, 2004.

    Google Scholar 

  66. Logothetidis, S. et al., Room temperature oxidation behavior of TiN thin films, Thin Solid Films, 1999, vol. 338, nos. 1–2, pp. 304–313.

    Article  Google Scholar 

  67. Van Bui, H. et al., Growth kinetics and oxidation mechanism of ALD TiN thin films monitored by in situ spectroscopic ellipsometry, J. Electrochem. Soc., 2011, vol. 158, no. 3, pp. H214–H220.

    Article  Google Scholar 

  68. Troyan, J.E., Properties, production, and uses of hydrazine, Ind. Eng. Chem., 1953, vol. 45, no. 12, pp. 2608–2612.

    Article  Google Scholar 

  69. Musschoot, J. et al., Atomic layer deposition of titanium nitride from TDMAT precursor, Microelectron. Eng., 2009, vol. 86, no. 1, pp. 72–77.

    Article  Google Scholar 

  70. Devore, T.C. and Gallaher, T.N., Vibrational infrared-spectrum of the group-IV transition-metal nitride gaseous molecules, J. Chem. Phys., 1979, vol. 70, no. 7, pp. 3497–3501.

    Article  Google Scholar 

  71. Yun, J.Y., Park, M.Y., and Rhee, S.W., Effect of the gas-phase reaction in metallorganic chemical vapor deposition of TiN from tetrakis(dimethylamido)titanium, J. Electrochem. Soc., 1998, vol. 145, no. 7, pp. 2453–2456.

    Article  Google Scholar 

  72. Chim, Y.C. et al., Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc, Thin Solid Films, 2009, vol. 517, no. 17, pp. 4845–4849.

    Article  Google Scholar 

  73. Mizuta, M. et al., Low-temperature growth of GaN and AlN on GaAs utilizing metalorganics and hydrazine, Jpn. J. Appl. Phys., Part 2, 1986, vol. 25, no. 12, pp. L945–L948.

    Google Scholar 

  74. Abdulagatov, A.I. et al., Molecular layer deposition and thermal transformations of titanium(aluminum)-vanadium hybrid organic-inorganic films, Russ. J. Appl. Chem., 2018, vol. 91, no. 3, pp. 347–359.

    Article  Google Scholar 

  75. Giguere, P.A. and Liu, I.D., On the infrared spectrum of hydrazine, J. Chem. Phys., 1952, vol. 20, no. 1, pp. 136–140.

    Article  Google Scholar 

  76. Amores, J.M.G. et al., An FT-IR study of ammonia adsorption and oxidation over anatase-supported metal oxides, Appl. Catal., B, 1997, vol. 13, no. 1, pp. 45–58.

    Article  Google Scholar 

  77. Devillepin, J. and Novak, A., Infrared and Raman-spectra of crystals of hydrazinium chloride and bromide at low-temperature. 1. Intramolecular vibrations, Mol. Cryst. Liq. Cryst., 1974, vol. 27, nos. 3–4, pp. 391–415.

    Article  Google Scholar 

  78. Snyder, R.G. and Decius, J.C., The infrared spectra of N2H6Cl2 and N2H6F2, Spectrochim. Acta, 1959, vol. 13, no. 4, pp. 280–290.

    Article  Google Scholar 

  79. Moore, G.E. and Badger, R.M., The infrared spectra and structure of the chloramines and nitrogen trichloride, J. Am. Chem. Soc., 1952, vol. 74, no. 23, pp. 6076–6080.

    Article  Google Scholar 

  80. Chuang, C.C., Shiu, J.S., and Lin, J.L., Interaction of hydrazine and ammonia with TiO2, Phys. Chem. Chem. Phys., 2000, vol. 2, no. 11, pp. 2629–2633.

    Article  Google Scholar 

  81. Dillon, A.C. et al., Ammonia decomposition on silicon surfaces studied using transmission Fourier-transform infrared-spectroscopy, J. Vacuum Sci. Technol., A, 1991, vol. 9, no. 4, pp. 2222–2230.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Abdulagatov.

Additional information

Translated by S. Rostovtseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulagatov, A.I., Rabadanov, M.K. & Abdulagatov, I.M. Thermal Atomic Layer Deposition of TiNx Using TiCl4 and N2H4 . Russ Microelectron 49, 389–403 (2020). https://doi.org/10.1134/S1063739720050029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739720050029

Navigation