Skip to main content
Log in

Population of Bright Plume Threads in Solar Polar Coronal Holes

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Coronal holes are well accepted to be source regions of the fast solar wind. As one of the common structures in coronal holes, coronal plumes might contribute to the origin of the nascent solar wind. To estimate the contribution of coronal plumes to the nascent solar wind, we make the first attempt to estimate their populations in the solar polar coronal holes. By comparing the observations viewed from two different angles taken by the twin satellites of STEREO and the results of Monte Carlo simulations, we estimate about 16 – 27 plumes rooted in an area of \(4\times 10^{4}~\text{arcsec}^{2}\) of the polar coronal holes near the solar minimum, which occupy about 2 – 3.4% of the area. Based on these values, the contribution of coronal plumes to the nascent solar wind has also been discussed. A further investigation indicates that a more precise number of coronal plumes can be worked out with observations from three or more viewing angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Ahmad, I.A., Withbroe, G.L.: 1977, EUV analysis of polar plumes. Solar Phys. 53, 397. DOI. ADS.

    Article  ADS  Google Scholar 

  • Spice Consortium, Anderson, M., Appourchaux, T., Auchère, F., Aznar Cuadrado, R., Barbay, J., Baudin, F., Beardsley, S., Bocchialini, K., Borgo, B., Bruzzi, D., Buchlin, E., Burton, G., Büchel, V., Caldwell, M., Caminade, S., Carlsson, M., Curdt, W., Davenne, J., Davila, J., Deforest, C.E., Del Zanna, G., Drummond, D., Dubau, J., Dumesnil, C., Dunn, G., Eccleston, P., Fludra, A., Fredvik, T., Gabriel, A., Giunta, A., Gottwald, A., Griffin, D., Grundy, T., Guest, S., Gyo, M., Haberreiter, M., Hansteen, V., Harrison, R., Hassler, D.M., Haugan, S.V.H., Howe, C., Janvier, M., Klein, R., Koller, S., Kucera, T.A., Kouliche, D., Marsch, E., Marshall, A., Marshall, G., Matthews, S.A., McQuirk, C., Meining, S., Mercier, C., Morris, N., Morse, T., Munro, G., Parenti, S., Pastor-Santos, C., Peter, H., Pfiffner, D., Phelan, P., Philippon, A., Richards, A., Rogers, K., Sawyer, C., Schlatter, P., Schmutz, W., Schühle, U., Shaughnessy, B., Sidher, S., Solanki, S.K., Speight, R., Spescha, M., Szwec, N., Tamiatto, C., Teriaca, L., Thompson, W., Tosh, I., Tustain, S., Vial, J.-C., Walls, B., Waltham, N., Wimmer-Schweingruber, R., Woodward, S., Young, P., de Groof, A., Pacros, A., Williams, D., Müller, D.: 2020, The Solar Orbiter SPICE instrument. An extreme UV imaging spectrometer. Astron. Astrophys. 642, A14. DOI. ADS.

    Article  Google Scholar 

  • Aschwanden, M.J.: 2011, Solar stereoscopy and tomography. Living Rev. Solar Phys. 8, 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J.: 2013, Nonlinear force-free magnetic field fitting to coronal loops with and without stereoscopy. Astrophys. J. 763, 115. DOI. ADS.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Wuelser, J.-P., Nitta, N.V., Lemen, J.R., Sandman, A.: 2009, First three-dimensional reconstructions of coronal loops with the STEREO A+B spacecraft. III. Instant stereoscopic tomography of active regions. Astrophys. J. 695, 12. DOI. ADS.

    Article  ADS  Google Scholar 

  • Avallone, E.A., Tiwari, S.K., Panesar, N.K., Moore, R.L., Winebarger, A.: 2018, Critical magnetic field strengths for solar coronal plumes in quiet regions and coronal holes? Astrophys. J. 861, 111. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brooks, D.H., Winebarger, A.R., Savage, S., Warren, H.P., De Pontieu, B., Peter, H., Cirtain, J.W., Golub, L., Kobayashi, K., McIntosh, S.W., McKenzie, D., Morton, R., Rachmeler, L., Testa, P., Tiwari, S., Walsh, R.: 2020, The drivers of active region outflows into the slow solar wind. Astrophys. J. 894, 144. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cheng, L., Zhang, Q., Wang, Y., Li, X., Liu, R.: 2020, Using stereoscopic observations of cometary plasma tails to infer solar wind speed. Astrophys. J. 897, 87. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cho, I.-H., Nakariakov, V.M., Moon, Y.-J., Lee, J.-Y., Yu, D.J., Cho, K.-S., Yurchyshyn, V., Lee, H.: 2020, Accelerating and supersonic density fluctuations in coronal hole plumes: signature of nascent solar winds. Astrophys. J. Lett. 900, L19. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cranmer, S.R.: 2009, Coronal holes. Living Rev. Solar Phys. 6, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • de Patoul, J., Inhester, B., Feng, L., Wiegelmann, T.: 2013, 2D and 3D polar plume analysis from the three vantage positions of STEREO/EUVI A, B, and SOHO/EIT. Solar Phys. 283, 207. DOI. ADS.

    Article  ADS  Google Scholar 

  • DeForest, C.E., Gurman, J.B.: 1998, Observation of quasi-periodic compressive waves in solar polar plumes. Astrophys. J. Lett. 501, L217. DOI. ADS.

    Article  ADS  Google Scholar 

  • Deforest, C.E., Hoeksema, J.T., Gurman, J.B., Thompson, B.J., Plunkett, S.P., Howard, R., Harrison, R.C., Hassler, D.M.: 1997, Polar plume anatomy: results of a coordinated observation. Solar Phys. 175, 393. DOI. ADS.

    Article  ADS  Google Scholar 

  • DeForest, C.E., Hagenaar, H.J., Lamb, D.A., Parnell, C.E., Welsch, B.T.: 2007, Solar magnetic tracking. I. Software comparison and recommended practices. Astrophys. J. 666, 576. DOI. ADS.

    Article  ADS  Google Scholar 

  • Feng, L., Inhester, B., Mierla, M.: 2013, Comparisons of CME morphological characteristics derived from five 3D reconstruction methods. Solar Phys. 282, 221. DOI. ADS.

    Article  ADS  Google Scholar 

  • Feng, L., Inhester, B., Solanki, S.K., Wiegelmann, T., Podlipnik, B., Howard, R.A., Wuelser, J.-P.: 2007a, First stereoscopic coronal loop reconstructions from STEREO SECCHI images. Astrophys. J. Lett. 671, L205. DOI. ADS.

    Article  ADS  Google Scholar 

  • Feng, L., Wiegelmann, T., Inhester, B., Solanki, S., Gan, W.Q., Ruan, P.: 2007b, Magnetic stereoscopy of coronal loops in NOAA 8891. Solar Phys. 241, 235. DOI. ADS.

    Article  ADS  Google Scholar 

  • Feng, L., Inhester, B., Solanki, S.K., Wilhelm, K., Wiegelmann, T., Podlipnik, B., Howard, R.A., Plunkett, S.P., Wuelser, J.P., Gan, W.Q.: 2009, Stereoscopic polar plume reconstructions from STEREO/SECCHI images. Astrophys. J. 700, 292. DOI. ADS.

    Article  ADS  Google Scholar 

  • Feng, L., Inhester, B., Wei, Y., Gan, W.Q., Zhang, T.L., Wang, M.Y.: 2012, Morphological evolution of a three-dimensional coronal mass ejection cloud reconstructed from three viewpoints. Astrophys. J. 751, 18. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fu, H., Xia, L., Li, B., Huang, Z., Jiao, F., Mou, C.: 2014, Measurements of outflow velocities in on-disk plumes from EIS/Hinode observations. Astrophys. J. 794, 109. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gabriel, A.H., Bely-Dubau, F., Lemaire, P.: 2003, The contribution of polar plumes to the fast solar wind. Astrophys. J. 589, 623. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gabriel, A.H., Abbo, L., Bely-Dubau, F., Llebaria, A., Antonucci, E.: 2005, Solar wind outflow in polar plumes from 1.05 to \(2.4~\text{R}_{solar}\). Astrophys. J. Lett. 635, L185. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gabriel, A., Bely-Dubau, F., Tison, E., Wilhelm, K.: 2009, The structure and origin of solar plumes: network plumes. Astrophys. J. 700, 551. DOI. ADS.

    Article  ADS  Google Scholar 

  • Giordano, S., Antonucci, E., Noci, G., Romoli, M., Kohl, J.L.: 2000, Identification of the coronal sources of the fast solar wind. Astrophys. J. Lett. 531, L79. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gupta, G.R., Banerjee, D., Teriaca, L., Imada, S., Solanki, S.: 2010, Accelerating waves in polar coronal holes as seen by EIS and SUMER. Astrophys. J. 718, 11. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hassler, D.M., Dammasch, I.E., Lemaire, P., Brekke, P., Curdt, W., Mason, H.E., Vial, J.-C., Wilhelm, K.: 1999, Solar wind outflow and the chromospheric magnetic network. Science 283, 810. DOI. ADS.

    Article  ADS  Google Scholar 

  • He, J.-S., Tu, C.-Y., Tian, H., Marsch, E.: 2010, Solar wind origins in coronal holes and in the quiet Sun. Adv. Space Res. 45, 303. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St. Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudiniere, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67. DOI. ADS.

    Article  ADS  Google Scholar 

  • Huang, Z., Madjarska, M.S., Doyle, J.G., Lamb, D.A.: 2012, Coronal hole boundaries at small scales. IV. SOT view. Magnetic field properties of small-scale transient brightenings in coronal holes. Astron. Astrophys. 548, A62. DOI. ADS.

    Article  ADS  Google Scholar 

  • Huang, Z., Madjarska, M.S., Scullion, E.M., Xia, L.-D., Doyle, J.G., Ray, T.: 2017, Explosive events in active region observed by IRIS and SST/CRISP. Mon. Not. Roy. Astron. Soc. 464, 1753. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jiang, H., Wang, J., Liu, C., Jing, J., Liu, H., Wang, J.T.L., Wang, H.: 2020, Identifying and tracking solar magnetic flux elements with deep learning. Astrophys. J. Suppl. 250, 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jiao, F., Xia, L., Li, B., Huang, Z., Li, X., Chandrashekhar, K., Mou, C., Fu, H.: 2015, Sources of quasi-periodic propagating disturbances above a solar polar coronal hole. Astrophys. J. Lett. 809, L17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: an introduction. Space Sci. Rev. 136, 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Krieger, A.S., Timothy, A.F., Roelof, E.C.: 1973, A coronal hole and its identification as the source of a high velocity solar wind stream. Solar Phys. 29, 505. DOI. ADS.

    Article  ADS  Google Scholar 

  • Krishna Prasad, S., Banerjee, D., Gupta, G.R.: 2011, Propagating intensity disturbances in polar corona as seen from AIA/SDO. Astron. Astrophys. 528, L4. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kumar, P., Karpen, J.T., Antiochos, S.K., Wyper, P.F., DeVore, C.R., DeForest, C.E.: 2019, Multiwavelength study of equatorial coronal-hole jets. Astrophys. J. 873, 93. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lamb, D.A., DeForest, C.E., Hagenaar, H.J., Parnell, C.E., Welsch, B.T.: 2008, Solar magnetic tracking. II. The apparent unipolar origin of quiet-Sun flux. Astrophys. J. 674, 520. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lamb, D.A., DeForest, C.E., Hagenaar, H.J., Parnell, C.E., Welsch, B.T.: 2010, Solar magnetic tracking. III. Apparent unipolar flux emergence in high-resolution observations. Astrophys. J. 720, 1405. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, X., Wang, Y., Liu, R., Shen, C., Zhang, Q., Zhuang, B., Liu, J., Chi, Y.: 2018, Reconstructing solar wind inhomogeneous structures from stereoscopic observations in white light: small transients along the Sun-Earth line. J. Geophys. Res. 123, 7257. DOI. ADS.

    Article  Google Scholar 

  • Li, X., Wang, Y., Liu, R., Shen, C., Zhang, Q., Lyu, S., Zhuang, B., Shen, F., Liu, J., Chi, Y.: 2020, Reconstructing solar wind inhomogeneous structures from stereoscopic observations in white light: solar wind transients in 3-D. J. Geophys. Res. 125, e27513. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lyu, S., Li, X., Wang, Y.: 2020, Optimal stereoscopic angle for reconstructing solar wind inhomogeneous structures. Adv. Space Res. 66, 2251. DOI. ADS.

    Article  ADS  Google Scholar 

  • Madjarska, M.S.: 2019, Coronal bright points. Living Rev. Solar Phys. 16, 2. DOI. ADS.

    Article  ADS  Google Scholar 

  • Madjarska, M.S., Wiegelmann, T.: 2009, Coronal hole boundaries evolution at small scales. I. EIT 195 Å and TRACE 171 Å view. Astron. Astrophys. 503, 991. DOI. ADS.

    Article  ADS  Google Scholar 

  • Madjarska, M.S., Huang, Z., Doyle, J.G., Subramanian, S.: 2012, Coronal hole boundaries evolution at small scales. III. EIS and SUMER views. Astron. Astrophys. 545, A67. DOI. ADS.

    Article  ADS  Google Scholar 

  • McGlasson, R.A., Panesar, N.K., Sterling, A.C., Moore, R.L.: 2019, Magnetic flux cancellation as the trigger mechanism of solar coronal jets. Astrophys. J. 882, 16. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mou, C., Huang, Z., Xia, L., Madjarska, M.S., Li, B., Fu, H., Jiao, F., Hou, Z.: 2016, Magnetic flux supplement to coronal bright points. Astrophys. J. 818, 9. DOI. ADS.

    Article  ADS  Google Scholar 

  • Müller, D., St. Cyr, O.C., Zouganelis, I., Gilbert, H.R., Marsden, R., Nieves-Chinchilla, T., Antonucci, E., Auchère, F., Berghmans, D., Horbury, T.S., Howard, R.A., Krucker, S., Maksimovic, M., Owen, C.J., Rochus, P., Rodriguez-Pacheco, J., Romoli, M., Solanki, S.K., Bruno, R., Carlsson, M., Fludra, A., Harra, L., Hassler, D.M., Livi, S., Louarn, P., Peter, H., Schühle, U., Teriaca, L., del Toro Iniesta, J.C., Wimmer-Schweingruber, R.F., Marsch, E., Velli, M., De Groof, A., Walsh, A., Williams, D.: 2020, The Solar Orbiter mission. Science overview. Astron. Astrophys. 642, A1. DOI. ADS.

    Article  Google Scholar 

  • Neugebauer, M.: 2012, Evidence for polar X-ray jets as sources of microstream peaks in the solar wind. Astrophys. J. 750, 50. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ofman, L., Nakariakov, V.M., Sehgal, N.: 2000, Dissipation of slow magnetosonic waves in coronal plumes. Astrophys. J. 533, 1071. DOI. ADS.

    Article  ADS  Google Scholar 

  • Panesar, N.K., Sterling, A.C., Moore, R.L.: 2018, Magnetic flux cancelation as the trigger of solar coronal jets in coronal holes. Astrophys. J. 853, 189. DOI. ADS.

    Article  ADS  Google Scholar 

  • Patsourakos, S., Vial, J.-C.: 2000, Outflow velocity of interplume regions at the base of Polar Coronal Holes. Astron. Astrophys. 359, L1. ADS.

    ADS  Google Scholar 

  • Poletto, G.: 2015, Solar coronal plumes. Living Rev. Solar Phys. 12, 7. DOI. ADS.

    Article  ADS  Google Scholar 

  • Popescu, M.D., Doyle, J.G., Xia, L.D.: 2004, Network boundary origins of fast solar wind seen in the low transition region? Astron. Astrophys. 421, 339. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pucci, S., Poletto, G., Sterling, A.C., Romoli, M.: 2014, Birth, life, and death of a solar coronal plume. Astrophys. J. 793, 86. DOI. ADS.

    Article  ADS  Google Scholar 

  • Qi, Y., Huang, Z., Xia, L., Li, B., Fu, H., Liu, W., Sun, M., Hou, Z.: 2019, On the relation between transition region network jets and coronal plumes. Solar Phys. 294, 92. DOI. ADS.

    Article  ADS  Google Scholar 

  • Raouafi, N.-E., Stenborg, G.: 2014, Role of transients in the sustainability of solar coronal plumes. Astrophys. J. 787, 118. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rieutord, M., Rincon, F.: 2010, The Sun’s supergranulation. Living Rev. Solar Phys. 7, 2. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, Y., Liu, Y., Su, J., Ibrahim, A.: 2011, Kinematics and fine structure of an unwinding polar jet observed by the Solar Dynamic Observatory/Atmospheric Imaging Assembly. Astrophys. J. Lett. 735, L43. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sterling, A.C.: 2000, Solar spicules: a review of recent models and targets for future observations – (invited review). Solar Phys. 196, 79. DOI. ADS.

    Article  ADS  Google Scholar 

  • Subramanian, S., Madjarska, M.S., Doyle, J.G.: 2010, Coronal hole boundaries evolution at small scales. II. XRT view. Can small-scale outflows at CHBs be a source of the slow solar wind. Astron. Astrophys. 516, A50. DOI. ADS.

    Article  ADS  Google Scholar 

  • Teriaca, L., Poletto, G., Romoli, M., Biesecker, D.A.: 2003, The nascent solar wind: origin and acceleration. Astrophys. J. 588, 566. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thompson, W.T.: 2006, Coordinate systems for solar image data. Astron. Astrophys. 449, 791. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thompson, W.T., Wei, K.: 2010, Use of the FITS world coordinate system by STEREO/SECCHI. Solar Phys. 261, 215. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tian, H., McIntosh, S.W., Habbal, S.R., He, J.: 2011a, Observation of high-speed outflow on plume-like structures of the quiet Sun and coronal holes with Solar Dynamics Observatory/Atmospheric Imaging Assembly. Astrophys. J. 736, 130. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tian, H., McIntosh, S.W., De Pontieu, B., Martínez-Sykora, J., Sechler, M., Wang, X.: 2011b, Two components of the solar coronal emission revealed by extreme-ultraviolet spectroscopic observations. Astrophys. J. 738, 18. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tian, H., McIntosh, S.W., Wang, T., Ofman, L., De Pontieu, B., Innes, D.E., Peter, H.: 2012, Persistent Doppler shift oscillations observed with Hinode/EIS in the solar corona: spectroscopic signatures of Alfvénic waves and recurring upflows. Astrophys. J. 759, 144. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tu, C.-Y., Zhou, C., Marsch, E., Xia, L.-D., Zhao, L., Wang, J.-X., Wilhelm, K.: 2005, Solar wind origin in coronal funnels. Science 308, 519. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, Y.-M.: 1998, Network activity and the evaporative formation of polar plumes. Astrophys. J. Lett. 501, L145. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Muglach, K.: 2008, Observations of low-latitude coronal plumes. Solar Phys. 249, 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Warren, H.P., Muglach, K.: 2016, Converging supergranular flows and the formation of coronal plumes. Astrophys. J. 818, 203. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, Y., Ji, H., Wang, Y., Xia, L., Shen, C., Guo, J., Zhang, Q., Huang, Z., Liu, K., Li, X., Liu, R., Wang, J., Wang, S.: 2020a, Concept of the Solar Ring mission: an overview. Sci. China, Technol. Sci. 63, 1699. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, Y., Chen, X., Wang, P., Qiu, C., Wang, Y., Zhang, Y.: 2020b, Concept of the Solar Ring mission: preliminary design and mission profile. Sci. China, Technol. Sci. DOI.

    Article  Google Scholar 

  • Wilhelm, K., Dammasch, I.E., Marsch, E., Hassler, D.M.: 2000, On the source regions of the fast solar wind in polar coronal holes. Astron. Astrophys. 353, 749. ADS.

    ADS  Google Scholar 

  • Wilhelm, K., Abbo, L., Auchère, F., Barbey, N., Feng, L., Gabriel, A.H., Giordano, S., Imada, S., Llebaria, A., Matthaeus, W.H., Poletto, G., Raouafi, N.-E., Suess, S.T., Teriaca, L., Wang, Y.-M.: 2011, Morphology, dynamics and plasma parameters of plumes and inter-plume regions in solar coronal holes. Astron. Astrophys. Rev. 19, 35. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wuelser, J.-P., Lemen, J.R., Tarbell, T.D., Wolfson, C.J., Cannon, J.C., Carpenter, B.A., Duncan, D.W., Gradwohl, G.S., Meyer, S.B., Moore, A.S., Navarro, R.L., Pearson, J.D., Rossi, G.R., Springer, L.A., Howard, R.A., Moses, J.D., Newmark, J.S., Delaboudiniere, J.-P., Artzner, G.E., Auchere, F., Bougnet, M., Bouyries, P., Bridou, F., Clotaire, J.-Y., Colas, G., Delmotte, F., Jerome, A., Lamare, M., Mercier, R., Mullot, M., Ravet, M.-F., Song, X., Bothmer, V., Deutsch, W.: 2004, EUVI: the STEREO-SECCHI extreme ultraviolet imager. In: Fineschi, S., Gummin, M.A. (eds.) Telescopes and Instrumentation for Solar Astrophysics, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 5171, 111. DOI. ADS.

    Chapter  Google Scholar 

  • Xia, L.D., Marsch, E., Curdt, W.: 2003, On the outflow in an equatorial coronal hole. Astron. Astrophys. 399, L5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Xia, L.D., Marsch, E., Wilhelm, K.: 2004, On the network structures in solar equatorial coronal holes. Observations of SUMER and MDI on SOHO. Astron. Astrophys. 424, 1025. DOI. ADS.

    Article  ADS  Google Scholar 

  • Xie, Z.X., Yu, D.R., Zhang, J., Yang, S.H., Hu, Q.H.: 2009, Properties of magnetic elements in the quiet Sun using the marker-controlled watershed method. Astron. Astrophys. 505, 801. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yang, S., Zhang, J., Zhang, Z., Zhao, Z., Liu, Y., Song, Q., Yang, S., Bao, X., Li, L., Chu, Z., Li, T.: 2011, Polar plumes observed at the total solar eclipse in 2009. Sci. China Ser. G, Phys. Mech. Astron. 54, 1906. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zangrilli, L., Giordano, S.M.: 2020, Contribution of polar plumes to fast solar wind. Astron. Astrophys. 643, A104. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referee for the constructive comments that have helped improve a lot the paper. This research is supported by National Natural Science Foundation of China (41974201, U1831112), the Strategic Priority Program of CAS (XDA15017300) and the Young Scholar Program of Shandong University, Weihai (2017WHWLJH07). STEREO is a project of NASA and we are grateful to the instrument team for collecting and preparing the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenghua Huang.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: A Test to The Method

Appendix: A Test to The Method

In order to test the method as described in Section 2, we apply it on a set of artificial data based on that 10 plumes (each has a size of a pixel) root in an area of \(40~\text{pixels}\times 40~\text{pixels}\). In Figure 9, we show the IVCs at a set of viewing angles. We can see that in this case the local peaks in the IVCs are sparse, and this is similar to those determined from observations (as shown in Figure 3). In Figure 10, we show the histograms of the distributions of the correlation coefficients derived from the Monte Carlo simulations of these artificial data. We can see that the distributions based on two viewing angles (black curves in Figure 10) show clear dominant peaks near the right number. The numbers of plumes indicated by these dominant peaks are from 10 to 12, except the case based on \(0^{\circ}\) and \(30^{ \circ }\). Although the histogram of the case of \(0^{\circ }\) and \(30^{ \circ }\) has dominant peak at the guessed plume number of 18, the distribution around the plume number of 10 still appears to be larger than the rest in general. Therefore, one can have a good estimation of the number of plumes based on the histograms of the number of hits based on two viewing angles within an error of about 20%. If we increase the correlation coefficient threshold to \(3\sigma \), we can see that very few (even none) hits can be obtained (see the red curves in Figure 10). It appears that one cannot get a better estimation of the plume number based on this threshold than that from \(2\sigma \).

Figure 9
figure 9

The intensity variation curves of the artificial data with 10 plumes in a region of \(40~\text{pixels}\times 40~\text{pixels}\) viewed at \(0^{\circ }\) (a), \(30^{\circ }\) (b), \(60^{\circ }\) (c), \(90^{\circ }\) (d), \(120^{\circ }\) (e) and \(150^{\circ }\) (f).

Figure 10
figure 10

Histograms of number of hits at various guessed number of plumes given in the Monte Carlo simulation based on the artificial data with 10 plumes (see Figure 9). Black curves are obtained from two viewing angles and a correlation coefficient threshold of \(2\sigma\) (a\(0^{\circ }\) & \(30^{\circ }\); b\(0^{\circ }\) & \(60^{ \circ }\); c\(0^{\circ }\) & \(90^{\circ }\); d\(0^{\circ }\) & \(120^{ \circ }\); e\(0^{\circ }\) & \(150^{\circ }\); f\(60^{\circ }\) & \(120^{ \circ }\)). Red curves are based on two viewing angles as same as those used in the black curves but with a correlation coefficient threshold of \(3\sigma \). (Red curves are not shown in panel b because none has satisfied the threshold.) Orange curves are obtained from three viewing angles and a correlation coefficient threshold of \(2\sigma\) (a\(0^{\circ }\), \(30^{ \circ }\) & \(60^{\circ }\); b\(0^{\circ }\), \(60^{\circ }\) & \(90^{ \circ }\); c\(0^{\circ }\), \(30^{\circ }\) & \(90^{\circ }\); d\(0^{ \circ }\), \(30^{\circ }\) & \(120^{\circ }\); e\(0^{\circ }\), \(30^{ \circ }\) & \(150^{\circ }\); f\(0^{\circ }\), \(60^{\circ }\) & \(120^{ \circ }\)).

While we include additional data from a third viewing angle, we found that the histograms of the number of hits using a threshold of \(2\sigma \) distribute at a few isolated numbers including one really close to the correct one (see the orange curves in Figure 10). Although this does not work out the exact answer, it gives a much better chance if one has to give a guess. If we are increasing the threshold further, the data from three viewing angles can derive a unique number that is very close to the answer at some point. However, we fail to find a universal threshold for all, and that seems to be different from case to case.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Zhang, Q., Xia, L. et al. Population of Bright Plume Threads in Solar Polar Coronal Holes. Sol Phys 296, 22 (2021). https://doi.org/10.1007/s11207-021-01773-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01773-w

Keywords

Navigation