Skip to main content
Log in

No evidence of regulation in root-mediated iron reduction in two Strategy I cluster-rooted Banksia species (Proteaceae)

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Non-mycorrhizal species such as Banksia (Proteaceae) that depend on root exudates to acquire phosphorus (P) are prominent in south-western Australia, a biodiversity hotspot on severely P-impoverished soils. We investigated the consequences of an exudate-releasing P-mobilising strategy related to control of iron (Fe) acquisition in two Banksia species, B. attenuata R.Br. and B. laricina C. Gardner, that differ greatly in their geographical distribution and rarity.

Methods

We undertook solution culture experiments to measure root-mediated Fe reduction (FeR) in non-cluster and cluster roots at four stages of cluster-root development, and whole root systems for plants grown at 2 to 300 μM Fe (as Fe-EDTA). As a positive control, we used Pisum sativum (cv. Dunn) to validate the FeR assay.

Results

Unlike typical Strategy I species, both Banksia species showed no significant variation in FeR, for either cluster or non-cluster roots, when grown at a wide range of Fe supply. For roots of different developmental stages, we measured a range for B. attenuata cluster roots of 0.13 ± 0.03 to 1.29 ± 0.14 μmol Fe3+ reduced g−1 FW h−1 and 0.56 ± 0.11 to 1.10 ± 0.24 μmol Fe3+ reduced g−1 FW h−1 in non-cluster roots. Similarly, for B. laricina cluster-roots, FeR ranged from 0.22 ± 0.07 to 1.21 ± 0.37 μmol Fe3+ reduced g−1 FW h−1, and in non-cluster roots from 0.56 ± 0.11 to 0.71 ± 0.08 μmol Fe3+ reduced g−1 FW h−1. We also observed only minor differences for whole-root system FeR, and even though B. attenuata showed signs of leaf Fe deficiency in the 2 μM Fe treatment, its FeR was the lowest of both species across all treatments at 0.079 ± 0.009 μmol Fe3+ reduced g−1 FW h−1, compared with the fastest rate of 0.20 ± 0.014 μmol Fe3+ reduced g−1 FW h−1 for B. laricina in the 28 μM Fe treatment. Taking plants through a pulse from low to high Fe, then back to low Fe supply did not elucidate any significant response in FeR.

Conclusions

Although Fe acquisition is tightly controlled in the investigated Banksia species, such control is not based on regulation of FeR, which challenges the model that is commonly accepted for Strategy I species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bates D, Mächler M, Bolker B, Walker S (2014) Fitting linear mixed-effects models using lme4. J Stat Soft 67:1–48

    Google Scholar 

  • Bednarek P, Kerhoas L, Einhorn J, Frański R, Wojtaszek P, Rybus-Zając M, Stobiecki M (2003) Profiling of flavonoid conjugates in Lupinus albus and Lupinus angustifolius responding to biotic and abiotic stimuli. J Chem Ecol 29:1127–1142

    Article  CAS  Google Scholar 

  • Bienfait HF, Bino RJ, Van der Bliek AM, Duivenvoorden JF, Fontaine JM (1983) Characterization of ferric reducing activity in roots of Fe-deficient Phaseolus vulgaris. Physiol Plant 59:196–202. https://doi.org/10.1111/j.1399-3054.1983.tb00757.x

    Article  CAS  Google Scholar 

  • Blair M, Knewtson S, Astudillo C, Li C-M, Fernandez A, Grusak M (2010) Variation and inheritance of iron reductase activity in the roots of common bean (Phaseolus vulgaris L.) and association with seed iron accumulation QTL. BMC Plant Biol 10:215. https://doi.org/10.1186/1471-2229-10-215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cakmak I, Sari N, Marschner H, Ekiz H, Kalayci M, Yilmaz A, Braun HJ (1996) Phytosiderophore release in bread and durum wheat genotypes differing in zinc efficiency. Plant Soil 180:183–189. https://doi.org/10.1007/bf00015301

    Article  CAS  Google Scholar 

  • Cawthray GR (2003) An improved reversed-phase liquid chromatographic method for the analysis of low-molecular mass organic acids in plant root exudates. J Chromatogr A 1011:233–240

    Article  CAS  Google Scholar 

  • Chaney RL, Brown JC, Tiffin LO (1972) Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol 50:208–213

    Article  CAS  Google Scholar 

  • Chang Y-C, Zouari M, Gogorcena Y, Lucena JJ, Abadía J (2003) Effects of cadmium and lead on ferric chelate reductase activities in sugar beet roots. Plant Physiol Biochem 41:999–1005. https://doi.org/10.1016/j.plaphy.2003.07.007

    Article  CAS  Google Scholar 

  • DEC (2012) Descriptions and mapping by the Western Australian herbarium. Department of Environment and Conservation, Perth

    Google Scholar 

  • Denton MD, Veneklaas EJ, Freimoser FM, Lambers H (2007a) Banksia species (Proteaceae) from severely phosphorus-impoverished soils exhibit extreme efficiency in the use and re-mobilization of phosphorus. Plant Cell Environ 30:1557–1565. https://doi.org/10.1111/j.1365-3040.2007.01733.x

    Article  CAS  PubMed  Google Scholar 

  • Denton MD, Veneklaas EJ, Lambers H (2007b) Does phenotypic plasticity in carboxylate exudation differ among rare and widespread Banksia species (Proteaceae)? New Phytol 173:592–599. https://doi.org/10.1111/j.1469-8137.2006.01956.x

    Article  CAS  PubMed  Google Scholar 

  • Fourcroy P, Sisó-Terraza P, Sudre D, Savirón M, Reyt G, Gaymard F, Abadía A, Abadia J, Álvarez-Fernández A, Briat JF (2014) Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. New Phytol 201:155–167

    Article  CAS  Google Scholar 

  • Fox TR, Comerford NB, McFee WW (1990) Phosphorus and aluminum release from a spodic horizon mediated by organic acids. Soil Sci Soc Am J 54:1763–1767. https://doi.org/10.2136/sssaj1990.03615995005400060043x

    Article  CAS  Google Scholar 

  • Gardner WK, Parbery DG, Barber DA (1981) Proteoid root morphology and function in Lupinus albus. Plant Soil 60:143–147

    Article  CAS  Google Scholar 

  • Gardner WK, Barber DA, Parbery DG (1983) The acquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which phosphorus movement in the soil/root interface is enhanced. Plant Soil 70:107–124

    Article  CAS  Google Scholar 

  • Geelhoed JS, Van Riemsdijk WH, Findenegg GR (1999) Simulation of the effect of citrate exudation from roots on the plant availability of phosphate adsorbed on goethite. Eur J Soil Sci 50:379–390. https://doi.org/10.1046/j.1365-2389.1999.00251.x

    Article  CAS  Google Scholar 

  • Gogorcena Y, Abadía J, Abadía A (2000) Induction of in vivo root ferric chelate reductase activity in fruit tree rootstock. J Plant Nutr 23:9–21. https://doi.org/10.1080/01904160009381993

    Article  CAS  Google Scholar 

  • Gogorcena Y, Abadía J, Abadía A (2005) A new technique for screening Iron-efficient genotypes in peach rootstocks: elicitation of root ferric chelate Reductase by manipulation of external Iron concentrations. J Plant Nutr 27:1701–1715. https://doi.org/10.1081/PLN-200026406

    Article  CAS  Google Scholar 

  • Groom PK, Froend RH, Mattiske EM, Gurner RP (2001) Long-term changes in vigour and distribution of Banksia and Melaleuca overstorey species on the swan coastal plain. J R Soc West Aust 84:63–69

    Google Scholar 

  • Grusak MA (1995) Whole -root iron(III)-reductase activity throughout the life cycle of iron-grown Pisum sativum L. (Fabaceae): relevance to the iron nutrition of developing seeds. Planta 197:111–117. https://doi.org/10.1007/bf00239946

    Article  CAS  Google Scholar 

  • Grusak MA, Kochian LV, Welch RM (1993) Spatial and temporal development of iron(III) reductase activity in root systems of Pisum sativum (Fabaceae) challenged with iron-deficiency stress. Am J Bot 80:300–308. https://doi.org/10.2307/2445353

    Article  CAS  Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochimica et Biophysica Acta-Biomembranes-Including Reviews on Biomembranes 1465:190–198

    Article  CAS  Google Scholar 

  • Handreck KA (1991) Interactions between iron and phosphorus in the nutrition of Banksia ericifolia lf var ericifolia (Proteaceae) in soil-less potting media. Aust J Bot 39:373–384

    Article  CAS  Google Scholar 

  • Hayes PE, Guilherme Pereira C, Clode PL, Lambers H (2019) Calcium-enhanced phosphorus toxicity in calcifuge and soil-indifferent Proteaceae along the Jurien Bay chronosequence. New Phytol 221:764–777

    Article  CAS  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195. https://doi.org/10.1023/A:1013351617532

    Article  CAS  Google Scholar 

  • Hirsch J, Marin E, Floriani M, Chiarenza S, Richaud P, Nussaume L, Thibaud MC (2006) Phosphate deficiency promotes modification of iron distribution in Arabidopsis plants. Biochimie 88:1767–1771. https://doi.org/10.1016/j.biochi.2006.05.007

    Article  CAS  PubMed  Google Scholar 

  • Hoehenwarter W, Mönchgesang S, Neumann S, Majovsky P, Abel S, Müller J (2016) Comparative expression profiling reveals a role of the root apoplast in local phosphate response. BMC Plant Biol 16:106

    Article  Google Scholar 

  • Hopper SD, Gioia P (2004) The southwest Australian floristic region: evolution and conservation of a global hotspot of biodiversity. Annu Rev Ecol Evol Syst 35:623–650

    Article  Google Scholar 

  • Ivanov R, Brumbarova T, Bauer P (2012) Fitting into the harsh reality: regulation of iron-deficiency responses in dicotyledonous plants. Mol Plant 5:27–42

    Article  CAS  Google Scholar 

  • Jin CW, You GY, He YF, Tang C, Wu P, Zheng SJ (2007) Iron deficiency-induced secretion of Phenolics facilitates the reutilization of root Apoplastic Iron in red clover. Plant Physiol 144:278–285. https://doi.org/10.1104/pp.107.095794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DL, Darrah PR (1994) Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166:247–257. https://doi.org/10.1007/BF00008338

    Article  CAS  Google Scholar 

  • Keerthisinghe G, Hocking PJ, Ryan PR, Delhaize E (1998) Effect of phosphorus supply on the formation and function of proteoid roots of white lupin (Lupinus albus L.). plant. Cell Environ 21:467–478

    Article  CAS  Google Scholar 

  • Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152. https://doi.org/10.1146/annurev-arplant-042811-105522

    Article  CAS  Google Scholar 

  • Lambers H (2014) Plant life on the sandplains in Southwest Australia: a global biodiversity hotspot. Apollo Books

  • Lambers H, Juniper D, Cawthray GR, Veneklaas EJ, Martínez-Ferri E (2002) The pattern of carboxylate exudation in Banksia grandis (Proteaceae) is affected by the form of phosphate added to the soil. Plant Soil 238:111–122

    Article  CAS  Google Scholar 

  • Lambers H, Brundrett M, Raven J, Hopper S (2010) Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 334:11–31. https://doi.org/10.1007/s11104-010-0444-9

    Article  CAS  Google Scholar 

  • Lambers H, Wright IJ, Pereira CG, Bellingham PJ, Bentley LP, Boonman A, Cernusak LA, Foulds W, Gleason SM, Gray EF (2020) Leaf manganese concentrations as a tool to assess belowground plant functioning in phosphorus-impoverished environments. Plant and soil: 1-19. https://doi.org/10.1007/s11104-020-04690-2

  • Liang R, Li C (2003) Differences in cluster-root formation and carboxylate exudation in Lupinus albus L. under different nutrient deficiencies. Plant Soil 248:221–227. https://doi.org/10.1023/A:1022367513025

    Article  CAS  Google Scholar 

  • López-Millán AF, Morales F, Sa A, Gogorcena Y, Abadía A, De Las Rivas J, Abadíıa J (2000) Responses of sugar beet roots to iron deficiency. Changes in carbon assimilation and oxygen use. Plant Physiol 124:885–898

    Article  Google Scholar 

  • Ma JF (2005) Plant root responses to three abundant soil minerals: silicon, aluminum and iron. Crit Rev Plant Sci 24:267–281. https://doi.org/10.1080/07352680500196017

    Article  CAS  Google Scholar 

  • Marschner H, Römheld V (1994) Strategies of plants for acquisition of iron. Plant Soil 165:261–274. https://doi.org/10.1007/BF00008069

    Article  CAS  Google Scholar 

  • Mast AR, Thiele K (2007) The transfer of Dryandra R.Br. to Banksia L.f. (Proteaceae). Aust Syst Bot 20:63–71. https://doi.org/10.1071/SB06016

    Article  Google Scholar 

  • McCulloch CE, Neuhaus JM (2005) Encyclopedia of biostatistics. John Wiley & Sons

  • Miller KG, Kominz MA, Browning JV, Wright JD, Mountain GS, Katz ME, Sugarman PJ, Cramer BS, Christie-Blick N, Pekar SF (2005) The Phanerozoic record of global sea-level change. Science 310:1293–1298. https://doi.org/10.1126/science.1116412

    Article  CAS  PubMed  Google Scholar 

  • Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Ortet P, Creff A, Somerville S, Rolland N (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci U S A 102:11934–11939

    Article  CAS  Google Scholar 

  • Pate JS, Watt M (2002) Roots of Banksia spp. (Proteaceae) with special reference to functioning of their specialized root clusters. In: W Y., A Eshel, U Kafkafi (eds) Plant roots. Marcel Dekker Incorporated, New York

  • Pate JS, Verboom WH, Galloway PD (2001) Co-occurrence of Proteaceae, laterite and related oligotrophic soils: coincidental associations or causative inter-relationships? Aust J Bot 49:529–560

    Article  CAS  Google Scholar 

  • Purnell H (1960) Studies of the family Proteaceae. I. Anatomy and morphology of the roots of some Victorian species. Aust J Bot 8:38–50. https://doi.org/10.1071/BT9600038

    Article  Google Scholar 

  • R Core Development Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Rayment GE, Higginson FR (1992) Australian laboratory handbook of soil and water chemical methods. Inkata Press Pty Ltd.

  • Rodríguez-Celma J, Vázquez-Reina S, Orduna J, Abadía A, Abadía J, Álvarez-Fernández A, López-Millán A-F (2011) Characterization of flavins in roots of Fe-deficient strategy I plants, with a focus on Medicago truncatula. Plant Cell Physiol 52:2173–2189

    Article  Google Scholar 

  • Roelofs RFR, Rengel Z, Cawthray GR, Dixon KW, Lambers H (2001) Exudation of carboxylates in Australian Proteaceae: chemical composition. Plant Cell Environ 24:891–904

    Article  CAS  Google Scholar 

  • Römheld V, Marschner H (1983) Mechanism of iron uptake by peanut plants: I. FeIII reduction, chelate splitting, and release of phenolics. Plant Physiol 71:949–954

    Article  Google Scholar 

  • Rosenfield C-L, Reed DW, Kent MW (1991) Dependency of Iron reduction on Development of a unique root morphology in Ficus benjamina L. Plant Physiol 95:1120–1124. https://doi.org/10.1104/pp.95.4.1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560. https://doi.org/10.1146/annurev.arplant.52.1.527

    Article  CAS  PubMed  Google Scholar 

  • Schmidt H, Günther C, Weber M, Spörlein C, Loscher S, Böttcher C, Schobert R, Clemens S (2014) Metabolome analysis of Arabidopsis thaliana roots identifies a key metabolic pathway for iron acquisition. PLoS One 9:e102444

    Article  Google Scholar 

  • Shane MW, Lambers H (2005a) Cluster roots: a curiosity in context. Plant Soil 274:101–125. https://doi.org/10.0007/s11104-004-2725-7

    Article  CAS  Google Scholar 

  • Shane MW, Lambers H (2005b) Manganese accumulation in leaves of Hakea prostrata (Proteaceae) and the significance of cluster roots for micronutrient uptake as dependent on phosphorus supply. Physiol Plant 124:441–450

    Article  CAS  Google Scholar 

  • Shane MW, De Vos M, De Roock S, Lambers H (2003a) Shoot P status regulates cluster-root growth and citrate exudation in Lupinus albus grown with a divided root system. Plant Cell Environ 26:265–273

    Article  CAS  Google Scholar 

  • Shane MW, de Vos M, de Roock S, Cawthray G, Lambers H (2003b) Effects of external phosphorus supply on internal phosphorus concentration and the initiation, growth and exudation of cluster roots in Hakea prostrata r.Br. Plant Soil 248:209–219. https://doi.org/10.1023/A:1022320416038

    Article  CAS  Google Scholar 

  • Shane MW, Cramer MD, Funayama-Noguchi S, Cawthray GR, Millar AH, Day DA, Lambers H (2004a) Developmental physiology of cluster-root carboxylate synthesis and exudation in harsh Hakea. Expression of Phosphoenolpyruvate carboxylase and the alternative oxidase. Plant Physiol 135:549–560. https://doi.org/10.1104/pp.103.035659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sisó-Terraza P, Rios JJ, Abadía J, Abadía A, Álvarez-Fernández A (2016) Flavins secreted by roots of iron-deficient Beta vulgaris enable mining of ferric oxide via reductive mechanisms. New Phytol 209:733–745. https://doi.org/10.1111/nph.13633

    Article  CAS  PubMed  Google Scholar 

  • Shane MW, McCully ME, Lambers H (2004b) Tissue and cellular phosphorus storage during development of phosphorus toxicity in Hakea prostrata (Proteaceae). J Exp Bot 55:1033–1044. https://doi.org/10.1093/jxb/erh111

    Article  CAS  PubMed  Google Scholar 

  • Waters BM, Blevins DG (2000) Ethylene production, cluster root formation, and localization of iron (III) reducing capacity in Fe deficient squash roots. Plant Soil 225:21–31

    Article  CAS  Google Scholar 

  • Weisskopf L, Abou-Mansour E, Fromin N, Tomasi N, Santelia D, Edelkott I, Neumann G, Aragno M, Tabacchi R, Martinoia E (2006) White lupin has developed a complex strategy to limit microbial degradation of secreted citrate required for phosphate acquisition. Plant Cell Environ 29:919–927

    Article  CAS  Google Scholar 

  • Zaïd EH, Arahou M, Diem HG, El Morabet R (2003) Is Fe deficiency rather than P deficiency the cause of cluster root formation in Casuarina species? Plant Soil 248:229–235

    Article  Google Scholar 

  • Zheng SJ, Tang C, Arakawa Y, Masaoka Y (2003) The responses of red clover (Trifolium pratense L.) to iron deficiency: a root Fe(III) chelate reductase. Plant Sci 164:679–687. https://doi.org/10.1016/S0168-9452(02)00422-3

    Article  CAS  Google Scholar 

  • Zheng L, Huang F, Narsai R, Wu J, Giraud E, He F, Cheng L, Wang F, Wu P, Whelan J, Shou H (2009) Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings. Plant Physiol 151:262–274. https://doi.org/10.1104/pp.109.141051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Contents of this publication do not necessarily reflect the views or policies of the US Department of Agriculture, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government. We thank the Western Australia Parks and Wildlife Service for their permission to collect seeds under permit. The authors would like to thank Blake Wood, Bill Piasini and Robert Creasy for assistance with plant maintenance; Blake Wood and Calum Irvine for assistance with FeR assays; Sonja Jakob, Etienne Laliberté, Caio Guilherme Pereira and Gerald Page for statistical advice and assistance with data analysis and interpretation and Cheeming Li for his efforts to isolate ferric reductase proteins. HL and EJV were supported by the Australian Research Council (ARC, DP0209245). Finally, the authors would like to express their gratitude to the anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory R. Cawthray.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Responsible Editor: Jian Feng Ma

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Michael W. Shane was deceased on April 3, 2016

Supplementary Information

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cawthray, G.R., Denton, M.D., Grusak, M.A. et al. No evidence of regulation in root-mediated iron reduction in two Strategy I cluster-rooted Banksia species (Proteaceae). Plant Soil 461, 203–218 (2021). https://doi.org/10.1007/s11104-021-04849-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-04849-5

Keywords

Navigation