Skip to main content
Log in

Omega Model for a Jump-Diffusion Process with a Two-Step Premium Rate and a Threshold Dividend Strategy

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

In this paper, a jump-diffusion Omega model with a two-step premium rate and a threshold dividend strategy is studied. For this model, the surplus process is a perturbation of a compound Poisson process by a Brownian motion. Firstly, using the strong Markov property, the integro-differential equations for the expected discounted dividend payments function, the Gerber-Shiu expected discounted penalty function and bankruptcy probability are derived. Secondly, for a constant bankruptcy rate function, the renewal equations satisfied by the expected discounted dividend payments function and the Gerber-Shiu expected discounted penalty function are obtained, respectively, and by iteration, their closed-form solutions are also given. Furthermore, the explicit solutions of the two kinds of functions are obtained when the individual claim size is subject to exponential distribution. Finally, a numerical example is presented to illustrate some properties of the Omega model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albrecher H, Kainhofer R (2002) Risk theory with a nonlinear dividend barrier. Computing 68(4):289–311

    Article  MathSciNet  Google Scholar 

  • Albrecher H, Lautscham V (2013) From ruin to bankruptcy for compound poisson surplus processes. Astin Bull 43(2):213–243

    Article  MathSciNet  Google Scholar 

  • Albrecher H, Hartinger J, Tichy RF (2005) On the distribution of dividend payments and the discounted penalty function in a risk model with linear dividend barrier. Scand Actuar J 2005(2):103–126

    Article  MathSciNet  Google Scholar 

  • Albrecher H, Gerber HU, Shiu ESW (2011) The optimal dividend barrier in the gamma-omega model. EAJ 1(1):43–55

    MathSciNet  MATH  Google Scholar 

  • De Finetti B (1957) Su un’impostazione alternativa della teoria collettiva del rischio. Transactions of the XVth international congress of actuaries 2(1):433–443

    Google Scholar 

  • Dufresne F, Gerber HU (1991) Risk theory for the compound poisson process that is perturbed by diffusion. Insur Math Econ 10(1):51–59

    Article  MathSciNet  Google Scholar 

  • Gao S, Liu ZM (2010) The perturbed compound poisson risk model with constant interest and a threshold dividend strategy. J Comput Appl Math 233 (9):2181–2188

    Article  MathSciNet  Google Scholar 

  • Gerber HU (1970) An extension of the renewal equation and its application in the collective theory of risk. Scand Actuar J 1970(3-4):205–210

    Article  MathSciNet  Google Scholar 

  • Gerber HU, Shiu ESW (1998) On the time value of ruin. NAAJ 2(1):48–72

    MathSciNet  MATH  Google Scholar 

  • Gerber HU, Shiu ESW (2006a) On optimal dividend strategies in the compound poisson model. NAAJ 10(2):76–93

    MathSciNet  MATH  Google Scholar 

  • Gerber HU, Shiu ESW (2006b) On optimal dividends: From reflectio to refraction. J Comput Appl Math 186(1):4–22

    Article  MathSciNet  Google Scholar 

  • Gerber HU, Shiu ESW, Yang H (2012) The omega model: from bankruptcy to occupation times in the red. EAJ 2(2):259–272

    MathSciNet  MATH  Google Scholar 

  • Kou S, Wang H (2003) First passage times of a jump diffusion process. Adv Appl Prob 35:504–531

    Article  MathSciNet  Google Scholar 

  • Kou S, Petrella G, Wang H (2005) Pricing path-dependent options with jump risk via laplace transforms. Kyoto Econ Rev 74(1):1–23

    Google Scholar 

  • Landriault D (2008) Constant dividend barrier in a risk model with interclaim-dependent claim sizes. Insur Math Econ 42(1):31–38

    Article  MathSciNet  Google Scholar 

  • Li S (2006) The distribution of the dividend payments in the compound poisson risk model perturbed by diffusion. Scand Actuar J 2006(2):73–85

    Article  MathSciNet  Google Scholar 

  • Wan N (2007) Dividend payments with a threshold strategy in the compound poisson risk model perturbed by diffusion. Insur Math Econ 40(3):509–523

    Article  MathSciNet  Google Scholar 

  • Wang W (2015) The perturbed sparre andersen model with interest and a threshold dividend strategy. Methodol Comput Appl Probab 17(2):251–283

    Article  MathSciNet  Google Scholar 

  • Yuen KC, Wang GJ, Li WK (2007) The gerber-shiu expected discounted penalty function for risk processes with interest and a constant dividend barrier. Insur Math Econ 40(1):104–112

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingmin He.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by MOE (Ministry of Education in China) Youth Project of Humanities and Social Sciences (Project No.14YJCZH048,15YJCZH204), National Natural Science Foundation of China (Grant No.11401436, 11601382).

Appendix

Appendix

Theorem 8

The integro-differential equation

$$ \begin{array}{@{}rcl@{}} \left \{\begin{array}{ll} \frac{\sigma^{2}}{2} {v}_{1}^{\prime\prime}(u)+c_{1} v_{1}^{\prime}(u)-(\lambda+\delta+\omega) v_{1}(u)+\lambda {\int}_{0}^{+\infty} v_{1}(u-x) p(x) \mathrm{d}x=f(u), \\ v_{1}(-\infty)=0,\ \ \ \ v_{1}(0)=a_{1}(0), \end{array} \right. \end{array} $$

the general solution of v1(u) is a renewal equation of the form

$$ \begin{array}{@{}rcl@{}} &v_{1}(u)={\varDelta}_{1}(u)+\widehat{\lambda} {\int}_{-\infty}^{0}v_{1}(z)F_{1}(u,z)\mathrm{d}z, \end{array} $$

where \(\widehat {\lambda }=\frac {2 \lambda }{\sigma ^{2}}\), and

$$ \begin{array}{@{}rcl@{}} &&F_{1}(u,z)=-{{\int}_{z}^{0}}K(u,y)p(y-z)\mathrm{d}y, \end{array} $$
(56)
$$ \begin{array}{@{}rcl@{}} &&{\varDelta}_{1}(u)=a_{1}(0)f_{0}(u)+\frac{2}{\sigma^{2}}{\int}_{-\infty}^{0} f(y)K(u,y)\mathrm{d}y, \end{array} $$
(57)
$$ \begin{array}{@{}rcl@{}} &&f_{0}(u)=e^{u}-\widehat{\lambda}{\int}_{-\infty}^{0}e^{z}F_{1}(u,z)\mathrm{d}z +\frac{2}{\sigma^{2}}{\int}_{-\infty}^{0}f_{1}(y)K(u,y)\mathrm{d}y, \end{array} $$
(58)
$$ \begin{array}{@{}rcl@{}} && f_{1}(u)=e^{u}(-\lambda{\int}_{0}^{+\infty}e^{-x}p(x)\mathrm{d}x-\frac{\sigma^{2}}{2} -c_{1}+\lambda+\delta+\omega), \end{array} $$
(59)

and K(u,y) is defined by Eqs. 60 and 61.

Proof

Let K(u,y) be the solution of the following equation

$$ \begin{array}{@{}rcl@{}} \left \{ \begin{array}{ll} \frac{\sigma^{2}}{2} {K}_{yy}^{\prime\prime}(u,y)-c_{1} {K}_{y}^{\prime}(u,y)-(\lambda+\delta+\omega) K(u,y)=0, \\ K(u,-\infty)=0,\ \ \ \ \ \ \ \ \ \ \ \ \ \ K(u,0)=0,\\ K(u,u+)=K(u,u-),\ \ \ \ \ {K}_{y}^{\prime}(u,u+)-{K}_{y}^{\prime}(u,u-)=1. \end{array} \right. \end{array} $$
(60)

Then the solution is

$$ \begin{array}{@{}rcl@{}} {K(u,y)=}\left \{ \begin{array}{ll} C_{0}(u)e^{{\beta}_{1}y}, \ \ \ \ &(-\infty<y\leq u), \\ C_{1}(u)(e^{{\beta}_{1}y}-e^{{\beta}_{2}y}), \ \ \ \ &(u<y\leq 0), \end{array} \right. \end{array} $$
(61)

where β1 > 0 > β2 are two roots of the equation \(\frac {\sigma ^{2}}{2} {\beta }^{2}-c_{1} {\beta }-(\lambda +\delta +\omega )=0\), and

$$ \begin{array}{@{}rcl@{}} &C_{0}(u)=\frac{e^{{\beta}_{1}u}-e^{{\beta}_{2}u}}{({\beta}_{1}-{\beta}_{2}) e^{({\beta}_{1}+{\beta}_{2})u}},\ \ \ C_{1}(u)=\frac{1}{e^{{\beta}_{2}u}({\beta}_{1}-{\beta}_{2})}. \end{array} $$

Let

$$ W_{1}(u)=v_{1}(u)-a_{1}(0)e^{u}, $$

then W1(u) satisfies the following equation

$$ \begin{array}{@{}rcl@{}} \left \{\begin{array}{ll} \frac{\sigma^{2}}{2} W_{1}^{\prime\prime}(u)+c_{1} {W}_{1}^{\prime}(u)-(\lambda+\delta+\omega) W_{1}(u)=f(u)-\lambda {\int}_{0}^{+\infty} W_{1}(u - x) p(x) \mathrm{d}x+a_{1}(0)f_{1}(u), \\ W_{1}(-\infty)=0,\ \ \ \ W_{1}(0)=0, \end{array} \right. \end{array} $$

where f1(u) is defined as Eq. 59. Multiplying both sides of the above equation by K(u,y) and integrating from \(-\infty \) to 0, integration by part and in view of Eq. 60, one can get

$$ \begin{array}{@{}rcl@{}} &W_{1}(u) = -\widehat{\lambda}{\int}_{-\infty}^{0}K(u,y){\int}_{0}^{+\infty}W_{1}(y - x)p(x) \mathrm{d}x\mathrm{d}y+\frac{2}{\sigma^{2}}{\int}_{-\infty}^{0}[f(y)+a_{1}(0) f_{1}(y)]K(u,y)\mathrm{d}y. \end{array} $$

Let \(F_{1}(u,z)=-{{\int \limits }_{z}^{0}}K(u,y)p(y-z)\mathrm {d}y\), one have

$$ \begin{array}{@{}rcl@{}} &W_{1}(u)=\widehat{\lambda}{\int}_{-\infty}^{0}W_{1}(z) F_{1}(u,z)\mathrm{d}z+ \frac{2}{\sigma^{2}}{\int}_{-\infty}^{0}[f(y)+a_{1}(0) f_{1}(y)]K(u,y)\mathrm{d}y. \end{array} $$

Substituting W1(u) = v1(u) − a1(0)eu into the above equation, one can obtained

$$ \begin{array}{@{}rcl@{}} &v_{1}(u)={\varDelta}_{1}(u)+\widehat{\lambda} {\int}_{-\infty}^{0}v_{1}(z)F_{1}(u,z)\mathrm{d}z,\ \ \ \ \ (-\infty<u\leq 0), \end{array} $$

where Δ1(u) is defined in Eq. 57. □

Then, by iteration, one can get the closed-form solution of v1(u) that

$$ \begin{array}{@{}rcl@{}} &v_{1}(u)={\varDelta}_{1}(u)+{\sum}_{k=1}^{\infty}\widehat{\lambda}^{k}{\int}_{-\infty}^{0}F_{1}^{(k)}(u,z){\varDelta}_{1}(z)\mathrm{d}z, \end{array} $$

where

$$ \begin{array}{@{}rcl@{}} {F}_{1}^{(1)}(u,z)&=&F_{1}(u,z),\\ {F}_{1}^{(k)}(u,z)&=&{\int}_{-\infty}^{0}F_{1}(u,s)F_{1}^{(k-1)}(s,z)\mathrm{d}s, \ \ \ \ (k=2,3,\cdot\cdot\cdot). \end{array} $$
(62)

Theorem 9

The integro-differential equation

$$ \begin{array}{@{}rcl@{}} \left \{\begin{array}{ll} \frac{\sigma^{2}}{2} {v}_{2}^{\prime\prime}(u) + c_{2} {v}_{2}^{\prime}(u) - (\lambda + \delta) v_{2}(u)+\lambda {{\int}_{0}^{u}} v_{2}(u - x) p(x) \mathrm{d}x+\lambda {\int}_{u}^{+\infty} v_{1}(u - x) p(x) \mathrm{d}x=g(u), \\ v_{2}(0)=a_{2}(0),\ \ \ \ v_{2}(b)=a_{2}(b), \end{array} \right. \end{array} $$

the general solution of v2(u) is a renewal equation of the form

$$ \begin{array}{@{}rcl@{}} &v_{2}(u)={\varDelta}_{2}(u)+\widehat{\lambda} {{\int}_{0}^{b}}v_{2}(z)G_{1}(u,z)\mathrm{d}z+\widehat{\lambda} {\int}_{-\infty}^{0}v_{1}(z)G_{2}(u,z)\mathrm{d}z, \end{array} $$

where \(\widehat {\lambda }=\frac {2 \lambda }{\sigma ^{2}}\),

$$ \begin{array}{@{}rcl@{}} \!\!\!\!\!\!G_{1}(u,z)&=&-{{\int}_{z}^{b}}\widehat{K}(u,y)p(y-z)\mathrm{d}y, \end{array} $$
(63)
$$ \begin{array}{@{}rcl@{}} \!\!\!\!\!\!G_{2}(u,z)&=&-{{\int}_{0}^{b}}\widehat{K}(u,y)p(y-z)\mathrm{d}y, \end{array} $$
(64)
$$ \begin{array}{@{}rcl@{}} \theta_{1}(u)&=&\frac{e^{-b}-e^{-u}}{e^{-b}-1}, \end{array} $$
(65)
$$ \begin{array}{@{}rcl@{}} \theta_{2}(u)&=&\frac{e^{b}-e^{b-u}}{e^{b}-1}, \end{array} $$
(66)
$$ \begin{array}{@{}rcl@{}} {\varDelta}_{2}(u)&=&a_{2}(0)g_{1}(u)+a_{2}(b)g_{2}(u)+\frac{2}{\sigma^{2}}{{\int}_{0}^{b}} g(y)\widehat{K}(u,y)\mathrm{d}y, \end{array} $$
(67)
$$ \begin{array}{@{}rcl@{}} g_{01}(u)&=&-{\lambda{\int}_{0}^{u}}\theta_{1}(u-x)p(x)\mathrm{d}x +\left( c_{2}+\lambda+\delta - \frac{\sigma^{2}}{2}\right)\theta_{1}(u) +\left( \frac{\sigma^{2}}{2} - c_{2}\right) \frac{e^{-b}}{e^{-b}-1},\ \ \ \end{array} $$
(68)
$$ \begin{array}{@{}rcl@{}} g_{02}(u)&=&-{\lambda{\int}_{0}^{u}}\theta_{2}(u-x)p(x)\mathrm{d}x +\left( c_{2}+\lambda+\delta-\frac{\sigma^{2}}{2}\right)\theta_{2}(u) +\left( \frac{\sigma^{2}}{2}-c_{2}\right)\frac{e^{b}}{e^{b}-1},\ \ \ \ \end{array} $$
(69)
$$ \begin{array}{@{}rcl@{}} g_{1}(u)&=&-\widehat{\lambda}{{\int}_{0}^{b}}\theta_{1}(z)G_{1}(u,z)\mathrm{d}z+ \frac{2}{\sigma^{2}}{{\int}_{0}^{b}}g_{01}(y)\widehat{K}(u,y)\mathrm{d}y +\theta_{1}(u), \end{array} $$
(70)
$$ \begin{array}{@{}rcl@{}} g_{2}(u)&=&-\widehat{\lambda}{{\int}_{0}^{b}}\theta_{2}(z)G_{1}(u,z)\mathrm{d}z+ \frac{2}{\sigma^{2}}{{\int}_{0}^{b}}g_{02}(y)\widehat{K}(u,y)\mathrm{d}y +\theta_{2}(u), \end{array} $$
(71)

and \(\widehat {K}(u,y)\) is defined by Eqs. 72 and 73.

Proof

Let \(\widehat {K}(u,y)\) be the solution of the following equation

$$ \begin{array}{@{}rcl@{}} \left \{\begin{array}{ll} \frac{\sigma^{2}}{2} \widehat{K}_{yy}^{\prime\prime}(u,y)-c_{2} \widehat{K}_{y}^{\prime}(u,y)-(\lambda+\delta) \widehat{K}(u,y)=0, \\ \widehat{K}(u,0)=0,\ \ \ \ \widehat{K}(u,b)=0,\\ \widehat{K}(u,u+)=\widehat{K}(u,u-),\ \ \ \ \ \widehat{K}_{y}^{\prime}(u,u+)-\widehat{K}_{y}^{\prime}(u,u-)=1. \end{array} \right. \end{array} $$
(72)

Then the solution is

$$ \begin{array}{@{}rcl@{}} {\widehat{K}(u,y)=}\left \{ \begin{array}{ll} C_{2}(u)(e^{\xi_{1}y}-e^{\xi_{2}y}), \ \ \ \ &(0<y\leq u), \\ C_{3}(u)e^{\xi_{1}y}+C_{4}(u)e^{\xi_{2}y}, \ \ \ \ &(u<y\leq b), \end{array} \right. \end{array} $$
(73)

where ξ1 > 0 > ξ2 are two roots of the equation \(\frac {\sigma ^{2}}{2} \xi ^{2}-c_{2} \xi -(\lambda +\delta )=0\), and

$$ \begin{array}{@{}rcl@{}} C_{2}(u)&=&\frac{e^{\xi_{1}u}-e^{(\xi_{1}-\xi_{2})b+\xi_{2}u}}{(\xi_{1}-\xi_{2}) e^{(\xi_{1}+\xi_{2})u}\left[e^{(\xi_{1}-\xi_{2})b}-1\right]},\ \ C_{3}(u)=\frac{e^{\xi_{1}u}-e^{\xi_{2}u}}{(\xi_{1}-\xi_{2})e^{(\xi_{1}+\xi_{2})u} \left[e^{(\xi_{1}-\xi_{2})b}-1\right]},\\ C_{4}(u)&=&-C_{3}(u)e^{(\xi_{1}-\xi_{2})b}. \end{array} $$

Let W2(u) = v2(u) − a2(0)𝜃1(u) − a2(b)𝜃2(u), where 𝜃1(u) and 𝜃2(u) are defined in Eqs. 65 and 66. Then W2(u) satisfies the following equation

$$ \begin{array}{@{}rcl@{}} \left \{\begin{array}{ll} &\frac{\sigma^{2}}{2} {W}_{2}^{\prime\prime}(u) + c_{2} {W}_{2}^{\prime}(u) - (\lambda+\delta) W_{2}(u) = g(u) - \lambda {{\int}_{0}^{u}} W_{2}(u - x) p(x) \mathrm{d}x - \lambda{\int}_{u}^{+\infty}v_{1}(u - x)p(x)\mathrm{d}x \\&\ \ +a_{2}(0)g_{01}(u)+a_{2}(b) g_{02}(u), \\ &W_{2}(0)=0,\ \ \ \ W_{2}(b)=0, \end{array} \right. \end{array} $$

where g01(u) and g02(u) are defined as Eqs. 68 and 69. Multiplying both sides of the above equation by \(\widehat {K}(u,y)\) and integrating from 0 to b, integration by part and in view of Eq. 72, one can get

$$ \begin{array}{@{}rcl@{}} &W_{2}(u)=-\widehat{\lambda}{{\int}_{0}^{b}}\widehat{K}(u,y){{\int}_{0}^{y}}W_{2}(y-x)p(x) \mathrm{d}x\mathrm{d}y-\widehat{\lambda}{{\int}_{0}^{b}}\widehat{K}(u,y){\int}_{y}^{+\infty} v_{1}(y-x)p(x) \mathrm{d}x\mathrm{d}y \\& +\frac{2}{\sigma^{2}}{{\int}_{0}^{b}}[g(y)+a_{2}(0) g_{01}(y)+a_{2}(b)g_{02}(y)]K(u,y)\mathrm{d}y. \end{array} $$

Denote \(G_{1}(u,z)=-{{\int \limits }_{z}^{b}}\widehat {K}(u,y)p(y-z)\mathrm {d}y\) and \(G_{2}(u,z)=-{{\int \limits }_{0}^{b}}\widehat {K}(u,y)p(y-z)\mathrm {d}y\), one have

$$ \begin{array}{@{}rcl@{}} W_{2}(u)&=&\widehat{\lambda}{{\int}_{0}^{b}}W_{2}(z) G_{1}(u,z)\mathrm{d}z+ \widehat{\lambda}{\int}_{-\infty}^{0}v_{1}(z) G_{2}(u,z)\mathrm{d}z+ \frac{2}{\sigma^{2}}{{\int}_{0}^{b}}[g(y)+a_{2}(0) g_{01}(y)\\&&+a_{2}(b) g_{02}(y)]K(u,y)\mathrm{d}y. \end{array} $$

Substituting W2(u) = v2(u) − a2(0)𝜃1(u) − a2(b)𝜃2(u) into the above equation, one can obtained

$$ \begin{array}{@{}rcl@{}} &v_{2}(u)={\varDelta}_{2}(u)+\widehat{\lambda} {{\int}_{0}^{b}}v_{2}(z)G_{1}(u,z)\mathrm{d}z+\widehat{\lambda} {\int}_{-\infty}^{0}v_{1}(z)G_{2}(u,z)\mathrm{d}z, (0<u\leq b), \end{array} $$

where Δ2(u) is defined in Eq. 67. □

Then, by iteration, one can get the closed-form solution of v2(u) that

$$ \begin{array}{@{}rcl@{}} &v_{2}(u)=\widehat{{\varDelta}}_{2}(u)+{\sum}_{k=1}^{\infty}\widehat{\lambda}^{k}{{\int}_{0}^{b}}G_{1}^{(k)}(u,z)\widehat{{\varDelta}}_{2}(z)\mathrm{d}z, \end{array} $$

where

$$ \begin{array}{@{}rcl@{}} \widehat{{\varDelta}}_{2}(u)&=&{\varDelta}_{2}(u)+\widehat{\lambda}{\int}_{-\infty}^{0}v_{1}(z) G_{2}(u,z)\mathrm{d}z,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ {G}_{1}^{(1)}(u,z)&=&G_{1}(u,z),\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ {G}_{1}^{(k)}(u,z)&=&{{\int}_{0}^{b}}G_{1}(u,s)G_{1}^{(k-1)}(s,z)\mathrm{d}s, \ \ \ \ \ (k=2,3,\cdot\cdot\cdot). \end{array} $$

Theorem 10

The integro-differential equation

$$ \begin{array}{@{}rcl@{}} \left \{\begin{array}{ll} &\frac{\sigma^{2}}{2} {v}_{3}^{\prime\prime}(u)+(c_{2}-\alpha) v_{3}^{\prime}(u)-(\lambda+\delta) v_{3}(u)+\lambda {\int}_{0}^{u-b} v_{3}(u-x) p(x) \mathrm{d}x +\lambda {\int}_{u-b}^{u} v_{2}(u-x) p(x) \mathrm{d}x\\ &\ \ +\lambda{\int}_{u}^{+\infty}v_{1}(u-x)p(x)\mathrm{d}x=h(u), \\ &v_{3}(b)=a_{3}(b),\ \ \ \ v_{3}(+\infty)=0, \end{array} \right. \end{array} $$

the general solution of v3(u) is a renewal equation of the form

$$ \begin{array}{@{}rcl@{}} &v_{3}(u) = {\varDelta}_{3}(u) + \widehat{\lambda} {\int}_{b}^{+\infty}v_{3}(z)H_{1}(u,z)\mathrm{d}z + \widehat{\lambda} {{\int}_{0}^{b}}v_{2}(z)H_{2}(u,z)\mathrm{d}z + \widehat{\lambda} {\int}_{-\infty}^{0}v_{1}(z)H_{2}(u,z)\mathrm{d}z, \end{array} $$

where \(\widehat {\lambda }=\frac {2 \lambda }{\sigma ^{2}}\),

$$ \begin{array}{@{}rcl@{}} H_{1}(u,z)&=&-{\int}_{z}^{+\infty}\widetilde{K}(u,y)p(y-z)\mathrm{d}y, \end{array} $$
(74)
$$ \begin{array}{@{}rcl@{}} H_{2}(u,z)&=&-{\int}_{b}^{+\infty}\widetilde{K}(u,y)p(y-z)\mathrm{d}y, \end{array} $$
(75)
$$ \begin{array}{@{}rcl@{}} {\varDelta}_{3}(u)&=&a_{3}(b)h_{0}(u)+\frac{2}{\sigma^{2}}{\int}_{b}^{+\infty} h(y)\widetilde{K}(u,y)\mathrm{d}y, \end{array} $$
(76)
$$ \begin{array}{@{}rcl@{}} \ \ \ \ \ h_{0}(u)&=&e^{b-u}+\frac{2}{\sigma^{2}}{\int}_{b}^{+\infty}h_{1}(y)\widetilde{K}(u,y)\mathrm{d}y- \widehat{\lambda}{\int}_{b}^{+\infty}e^{b-z}H_{1}(u,z)\mathrm{d}z, \end{array} $$
(77)
$$ \begin{array}{@{}rcl@{}} \ \ \ \ h_{1}(u)&=&e^{b-u}\left[-\lambda{\int}_{0}^{u-b}e^{x}p(x)\mathrm{d}x-\frac{\sigma^{2}}{2}+c_{2} -\alpha+\lambda+\delta\right], \end{array} $$
(78)

and \(\widetilde {K}(u,y)\) is defined by Eqs. 79 and 80.

Proof

Let \(\widetilde {K}(u,y)\) be the solution of the following equation

$$ \begin{array}{@{}rcl@{}} \left \{ \begin{array}{ll} \frac{\sigma^{2}}{2} \widetilde{K}_{yy}^{\prime\prime}(u,y)-(c_{2}-\alpha) \widetilde{K}_{y}^{\prime}(u,y)-(\lambda+\delta) \widetilde{K}(u,y)=0, \\ \widetilde{K}(u,b)=0,\ \ \ \ \widetilde{K}(u,+\infty)=0,\\ \widetilde{K}(u,u+)=\widetilde{K}(u,u-),\ \ \ \ \ \widetilde{K}_{y}^{\prime}(u,u+)-\widetilde{K}_{y}^{\prime}(u,u-)=1. \end{array} \right. \end{array} $$
(79)

Then the solution is

$$ \begin{array}{@{}rcl@{}} {\widetilde{K}(u,y)=}\left \{ \begin{array}{ll} C_{5}(u)e^{\eta_{1}y}+C_{6}(u)e^{\eta_{2}y}, \ \ \ \ &(b<y\leq u), \\ C_{7}(u)e^{\eta_{2}y}, \ \ \ \ &(u<y< +\infty), \end{array} \right. \end{array} $$
(80)

where η1 > 0 > η2 are two roots of the equation \(\frac {\sigma ^{2}}{2} \eta ^{2}-(c_{2}-\alpha ) \eta -(\lambda +\delta )=0\), and

$$ \begin{array}{@{}rcl@{}} &C_{5}(u)=\frac{1}{(\eta_{2}-\eta_{1}) e^{\eta_{1}u}},\ C_{6}(u)=-C_{5}(u)e^{(\eta_{1}-\eta_{2})b},\ C_{7}(u)=\frac{e^{\eta_{1}u}-e^{(\eta_{1}-\eta_{2})b+\eta_{2}u}}{(\eta_{2}-\eta_{1}) e^{(\eta_{1}+\eta_{2})u}}. \end{array} $$

Let W3(u) = v3(u) − a3(b)ebu. Then W3(u) satisfies the following equation

$$ \begin{array}{@{}rcl@{}} \left \{\!\!\begin{array}{ll} &\frac{\sigma^{2}}{2} {W}_{3}^{\prime\prime}(u) + (c_{2} - \alpha) {W}_{3}^{\prime}(u) - (\lambda + \delta) W_{3}(u) = h(u) - \lambda {\int}_{0}^{u-b} W_{3}(u - x)p(x) \mathrm{d}x - \lambda{\int}_{u-b}^{u}v_{2}(u - x)p(x)\mathrm{d}x\\&\ \ \ -\lambda{\int}_{u}^{+\infty} v_{1}(u-x)p(x)\mathrm{d}x+a_{3}(b)h_{1}(u), \\ &W_{3}(b)=0,\ \ \ \ W_{3}(+\infty)=0, \end{array} \right. \end{array} $$

where h1(u) is defined as Eq. 78. Multiplying both sides of the above equation by \(\widetilde {K}(u,y)\) and integrating from b to \(+\infty \), integration by part and in view of Eq. 79, one can get

$$ \begin{array}{@{}rcl@{}} &W_{3}(u) = -\widehat{\lambda}{\int}_{b}^{+\infty}\widetilde{K}(u,y){\int}_{0}^{y-b} W_{3}(y - x)p(x)\mathrm{d}x\mathrm{d}y - \widehat{\lambda}{\int}_{b}^{+\infty}\widetilde{K}(u,y) {\int}_{y-b}^{y}v_{2}(y - x)p(x)\mathrm{d}x\mathrm{d}y \\&\ \ \ \ \ \ \!-\widehat{\lambda}{\int}_{b}^{+\infty} \widetilde{K}(u,y){\int}_{y}^{+\infty}v_{1}(y-x)p(x)\mathrm{d}x\mathrm{d}y +\frac{2}{\sigma^{2}}{\int}_{b}^{+\infty}[h(y)+a_{3}(b) h_{1}(y)]K(u,y)\mathrm{d}y. \end{array} $$

Denote \(H_{1}(u,z)=-{\int \limits }_{z}^{+\infty }\widetilde {K}(u,y)p(y-z)\mathrm {d}y\) and \(H_{2}(u,z)=-{\int \limits }_{b}^{+\infty }\widetilde {K}(u,y)p(y-z)\mathrm {d}y\), one have

$$ \begin{array}{@{}rcl@{}} &W_{3}(u)=\widehat{\lambda}{\int}_{b}^{+\infty}W_{3}(z) H_{1}(u,z)\mathrm{d}z+ \widehat{\lambda}{{\int}_{0}^{b}}v_{2}(z) H_{2}(u,z)\mathrm{d}z+ \widehat{\lambda}{\int}_{-\infty}^{0}v_{1}(z) H_{2}(u,z)\mathrm{d}z \\& + \frac{2}{\sigma^{2}}{\int}_{b}^{+\infty}[h(y)+a_{3}(b) h_{1}(y)]K(u,y)\mathrm{d}y.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{array} $$

Substituting W3(u) = v3(u) − a3(b)ebu into the above equation, one can obtained

$$ \begin{array}{@{}rcl@{}} v_{3}(u)&=&{\varDelta}_{3}(u)+\widehat{\lambda} {\int}_{b}^{+\infty}v_{3}(z)H_{1}(u,z)\mathrm{d}z+\widehat{\lambda} {{\int}_{0}^{b}}v_{2}(z)H_{2}(u,z)\mathrm{d}z\\&&+\widehat{\lambda} {\int}_{-\infty}^{0}v_{1}(z)H_{2}(u,z)\mathrm{d}z, \ \ (b<u<+\infty), \end{array} $$

where Δ3(u) is defined in Eq. 76. □

Then, by iteration, one can get the closed-form solution of v3(u) that

$$ \begin{array}{@{}rcl@{}} &v_{3}(u)=\widetilde{{\varDelta}}_{3}(u)+{\sum}_{k=1}^{\infty}\widehat{\lambda}^{k}{\int}_{b}^{+\infty}{H}_{1}^{(k)}(u,z)\widetilde{{\varDelta}}_{3}(z)\mathrm{d}z, \end{array} $$

where

$$ \begin{array}{@{}rcl@{}} &&\widetilde{{\varDelta}}_{3}(u)={\varDelta}_{3}(u)+\widehat{\lambda}{{\int}_{0}^{b}}v_{2}(z) H_{2}(u,z)\mathrm{d}z+\widehat{\lambda}{\int}_{-\infty}^{0}v_{1}(z) H_{2}(u,z)\mathrm{d}z,\\ &&{H}_{1}^{(1)}(u,z)=H_{1}(u,z), \\ &&{H}_{1}^{(k)}(u,z)={\int}_{b}^{+\infty}H_{1}(u,s){H}_{1}^{(k-1)}(s,z)\mathrm{d}s, \ \ \ \ \ (k=2,3,\cdot\cdot\cdot). \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., He, J., Zhao, Z. et al. Omega Model for a Jump-Diffusion Process with a Two-Step Premium Rate and a Threshold Dividend Strategy. Methodol Comput Appl Probab 24, 233–258 (2022). https://doi.org/10.1007/s11009-020-09844-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-020-09844-4

Keywords

Mathematics Subject Classification (2010)

Navigation