Skip to main content
Log in

Controlled Release Formulations of 2,4-Dichlorophenoxyacetic Acid with Ecofriendly Matrices for Agricultural and Environmental Sustainability

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Controlled release formulations (CRFs) of 2,4-dichlorophenoxyacetic acid (2,4-D) with chitosan (CTS) and chitosan-starch (CTS-STA) matrices were prepared in their un-crosslinked and crosslinked forms. Pesticide-matrix interactions were probed by FT-IR, while TGA and SEM provided information on the morphological characteristics of the pesticide-loaded beads. The CRF beads are more hydrophilic at pH 4 than at pH 8 due to increased number and strength of hydrogen bonds at pH 4. Crosslinking reduces the water uptake and expansion capacity of the beads in both acidic and basic media. Swelling of both bead types in water obeys first-order kinetics. Release of 2,4-D from the beads is of the burst type which exhibits zero-order kinetics. Measured n values range from 0.32 to 0.90, indicative of a non-Fickian diffusional release mechanism controlled by both water diffusion into, and relaxation of, the beads. These characteristics predispose the matrix blends as suitable biomaterials for agricultural and environmental sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. UN, www.un.org (2019).

  2. D. Goulson, J. Appl. Ecology, 50, 977 (2013).

    Article  Google Scholar 

  3. O. Oluwole and R. A. Cheke, Int. J. Agric. Sustain., 7, 153 (2009).

    Article  Google Scholar 

  4. V. Silva, H. G. J. Mol, P. Zomer, M. Tienstra, C. J. Ritsema, and V. Geissen, Sci. Total Environ., 653, 1532 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. V. O. Njoku, M. Asif, and B. H. Hameed, Desalin. Water Treatment, 55, 132 (2015).

    Article  CAS  Google Scholar 

  6. A. A. Tijani, J. Human Ecol., 19, 183 (2006).

    Article  Google Scholar 

  7. H. K. Gill and H. Garg, in Pesticides: Environmental Impacts and Management Strategies, M. L. Larramendy and S. Soloneski, Eds., IntechOpen Limited, London, 2014, pp 187–230.

  8. I. Mahmood, S. R. Imadi, K. Shazadi, A. Gul, and K. R. Hakeem, in Plant, Soil and Microbes: Volume 1: Implications in Crop Science, K. R. Hakeem, M. S. Akhtar, and S. N. A. Abdullah, Eds., Springer International Publishing, Cham, 2016, pp 253–269.

  9. P. Nicolopoulou-Stamati, S. Maipas, C. Kotampasi, P. Stamatis, and L. Hens, Front Public Health, 4, 148 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. M. W. Aktar, D. Sengupta, and A. Chowdhury, Interdisciplinary Toxicology, 2, 1 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  11. M. Lechenet, V. Bretagnolle, C. Bockstaller, F. Boissinot, M.-S. Petit, S. Petit, and N. M. Munier-Jolain, PLoS One, 9, e97922 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. M. Shirvani, E. Farajollahi, S. Bakhtiari, and O. A. Ogunseitan, J. Environ. Sci. Health Part B, 49, 255 (2014).

    Article  CAS  Google Scholar 

  13. P. I. Lee and J. X. Li, in Oral Controlled Release Formulation Design and Drug Delivery, 2010, pp 21–31.

  14. Y. H. Yun, B. K. Lee, and K. Park, J. Control. Release, 219, 2 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. L. A. Nnamonu, R. Sha’Ato, and I. Onyido, Nigerian J. Chem. Res., 13, 1 (2009).

    Google Scholar 

  16. L. A. Nnamonu, R. Sha’Ato, and I. Onyido, Mater. Sci. Appl., 3, 566 (2012).

    Google Scholar 

  17. I. Onyido, R. Sha’Ato, and L. A. Nnamonu, J. Environ. Protect., 3, 1085 (2012).

    Article  CAS  Google Scholar 

  18. S. Patel, J. Bajpai, R. Saini, A. K. Bajpai, and S. Acharya, Proc. Safety Environ. Protect., 117, 315 (2018).

    Article  CAS  Google Scholar 

  19. O. J. Otorkpa, Texila Int. J. Public Health, 5, 1 (2017).

    Article  Google Scholar 

  20. S. Atta, A. Jana, R. Ananthakirshnan, and P. S. Narayana Dhuleep, J. Ogricultural Food Chem., 58, 11844 (2010).

    Article  CAS  Google Scholar 

  21. A. M. Bashi, M. Z. Hussein, Z. Zainal, and D. Tichit, J. Solid State Chem., 203, 19 (2013).

    Article  CAS  Google Scholar 

  22. A. Ferraz, J. A. Souza, F. T. Silva, A. R. Gonçalves, R. E. Bruns, A. R. Cotrim, and R. M. Wilkins, J. Agric. Food Chem., 45, 1001 (1997).

    Article  CAS  Google Scholar 

  23. E.-R. Kenawy, React. Funct. Polym., 36, 31 (1998).

    Article  CAS  Google Scholar 

  24. O. U. Akakuru, H. Louis, P. Amos, O. C. Akakuru, E. I. Nosike, and E. F. Ogulewe, Biochem. Pharmacol., 7, 1000241 (2018).

    Google Scholar 

  25. O. U. Akakuru, H. Louis, O. C. Akakuru, and E. A. Eno, Int. J. Polym. Mater. Polym. Biomater., 1 (2019).

  26. S. Sreekumar, F. M. Goycoolea, B. M. Moerschbacher, and G. R. Rivera-Rodriguez, Sci. Rep., 8, 4695 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. V. M. Correlo, E. D. Pinho, I. Pashkuleva, M. Bhattacharya, N. M. Neves, and R. L. Reis, Macromol. Biosci., 7, 354 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. N. Devau, E. L. Cadre, P. Hinsinger, B. Jaillard, and F. Gérard, Appl. Geochem., 24, 2163 (2009).

    Article  CAS  Google Scholar 

  29. H. Ding, Y. S. Zhang, W. H. Li, X. Z. Zheng, M. K. Wang, L. N. Tang, and D. L. Chen, Appl. Environ. Soil Sci., 2016, 2013463 (2016).

    Article  Google Scholar 

  30. P. Nardi, U. Neri, G. Di Matteo, A. Trinchera, R. Napoli, R. Farina, G. V. Subbarao, and A. Benedetti, Pedosphere, 28, 332 (2018).

    Article  Google Scholar 

  31. M. F. Butler, A. H. Clark, and S. Adams, Biomacromolecules, 7, 2961 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. E. A. Kamoun, J. Adv. Res., 7, 69 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. S. de Sousa Freitas and F. M. Lanças, J. Separat. Sci., 32, 3698 (2009).

    Article  CAS  Google Scholar 

  34. B. K. Sridhar, A. Srinatha, B. B. Zaman, and H. Ragunandan, Indian J. Pharm. Sci., 73, 641 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. J. Chen, W. Wang, Y. Xu, and X. Zhang, J. Agric. Food Chem., 59, 307 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. E. Szymanska and K. Winnicka, Acta Poloniae Pharm., 69, 509 (2012).

    CAS  PubMed  Google Scholar 

  37. S. Dash, P. N. Murthy, L. Nath, and P. Chowdhury, Acta Poloniae Pharm., 67, 217 (2010).

    CAS  PubMed  Google Scholar 

  38. J. Brugnerotto, J. Lizardi, F. M. Goycoolea, W. Argüelles-Monal, J. Desbrières, and M. Rinaudo, Polymer, 42, 3569 (2001).

    Article  CAS  Google Scholar 

  39. O. U. Akakuru, M. Z. Iqbal, C. Liu, J. Xing, Z. Wei, Z. Jiang, Q. Fang, B. Yuan, E. I. Nosike, J. Xia, Y. Jin, J. Zheng, and A. Wu, Appl. Mater. Today, 18, 100524 (2020).

    Article  Google Scholar 

  40. O. U. Akakuru, C. Liu, M. Z. Iqbal, G. I. Dar, G. Yang, K. Qian, E. I. Nosike, J. Xing, Z. Zhang, Y. Li, J. Li, and A. Wu, Small, 16, 2002445 (2020).

    Article  CAS  Google Scholar 

  41. V. K. Shivaraju, S. Vallayil Appukuttan, and S. Kumar, Starch — Stärke, 71, 1700026 (2019).

    Google Scholar 

  42. Y. Zhao and M. D. A. Saldaña, J. Supercrit. Fluids, 147, 293 (2019).

    Article  CAS  Google Scholar 

  43. N. S. Trivedi, R.A. Kharkar, and S. A. Mandavgane, Resource-Efficient Technol., 2, S39 (2016).

    Article  Google Scholar 

  44. O. U. Akakuru, H. Louis, R. Uwaoma, E. E. Elemike, and O. C. Akakuru, React. Funct. Polym., 135, 32 (2019).

    Article  CAS  Google Scholar 

  45. T. Hatakeyama, K. Nakamura, and H. Hatakeyama, Thermochim. Acta, 352–353, 233 (2000).

    Article  Google Scholar 

  46. M. O. Aijaz, S. Haider, F. S. Al-Mubaddel, R. Khan, A. Haider, A. A. Alghyamah, W. A. Almasry, M. S. Javed Khan, M. Javid, and W. Ur Rehman, Fibers Polym., 18, 611 (2017).

    Article  CAS  Google Scholar 

  47. J. Rotta, E. Minatti, and P. L. M. Barreto, Food Sci. Technol., 31, 450 (2011).

    Article  Google Scholar 

  48. H. Moussout, H. Ahlafi, M. Aazza, and M. Bourakhouadar, Polym. Degrad. Stab., 130, 1 (2016).

    Article  CAS  Google Scholar 

  49. H. El Knidri, R. Belaabed, R. El Khalfaouy, A. Laajeb, A. Addaou, and A. Lahsini, J. Mater. Environ. Sci., 8, 3648 (2017).

    CAS  Google Scholar 

  50. K. L. Shantha and D. R. K. Harding, Carbohydr. Polym., 48, 247 (2002).

    Article  CAS  Google Scholar 

  51. G. Jiang, J. Sun, and F. Ding, J. Biomater. Sci. Polym. Ed., 25, 241 (2014).

    Article  PubMed  CAS  Google Scholar 

  52. D. Kulig, A. Zimoch-Korzycka, A. Jarmoluk, and K. Marycz, Polymers, 8, 167 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  53. J. Berger, M. Reist, J. M. Mayer, O. Felt, N. A. Peppas, and R. Gurny, Eur. J. Pharm. Biopharm., 57, 19 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Q. Z. Wang, X. G. Chen, N. Liu, S. X. Wang, C. S. Liu, X. H. Meng, and C. G. Liu, Carbohydr. Polym., 65, 194 (2006).

    Article  CAS  Google Scholar 

  55. C. B. Aakeröy and K. R. Seddon, Chem. Soc. Rev., 22, 397 (1993).

    Article  Google Scholar 

  56. D. Braga, L. Maini, F. Grepioni, A. De Cian, O. Félix, J. Fischer, and M. W. Hosseini, New J. Chem., 24, 547 (2000).

    Article  CAS  Google Scholar 

  57. G. A. Jeffreys, An Introduction to Hydrogen Bonding (Topics Physical Organic Chemistry), Oxford University Press, Oxford, 1998.

    Google Scholar 

  58. W. P. Jencks, Catalysis in Chemistry and Enzymology, Dover Publications Inc., New York, 1987.

    Google Scholar 

  59. H. Hesske and K. Gloe, J. Phys. Chem. A, 111, 9848 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. B. Reena and M. U. Kumar, J. Mater. Sci. Eng., 11, 399 (2013).

    Google Scholar 

  61. C. M. C. Filho, P. V. A. Bueno, A. F. Y. Matsushita, A. F. Rubira, E. C. Muniz, L. Duräes, D. M. B. Murtinho, and A. J. M. Valente, RSC Adv., 8, 14609 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. H. Schott, J. Macromol. Sci., Part B, 31, 1 (1992).

    Article  CAS  Google Scholar 

  63. I. Ogawa, H. Yamano, and K. Miyagawa, J. Appl. Polym. Sci., 47, 217 (1993).

    Article  CAS  Google Scholar 

  64. L. S. C. Wan, P. W. S. Heng, and L. F. Wong, Drug Develop. Ind. Pharm., 19, 1201 (1993).

    Article  CAS  Google Scholar 

  65. X. Huang and C. S. Brazel, J. Control. Release, 73, 121 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. J. A. Setterstrom, T. R. Tice, W. E. Meyers and J. W. Vincent, in Second World Congress on Biomaterials: 10th Annual Meeting of the Society for Biomaterials, Washington, DC, 1984, p 4.

  67. M. Rahim, N. Abu, and M. R. H. Mas Haris, Cogent Chem., 2, 1234345 (2016).

    Article  CAS  Google Scholar 

  68. Y. Diao, X. Si, W. Shang, Z. Zhou, Z. Wang, P. Zheng, P. Strappe, and C. Blanchard, CyTA — J. Food, 15, 327 (2017).

    Article  CAS  Google Scholar 

  69. K. Kumari and U. Rani, Adv. Appl. Sci. Res., 2, 48 (2011).

    CAS  Google Scholar 

  70. R. F. N. Quadrado and A.R. Fajardo, Arabian J. Chem., 13, 2183 (2020).

    Article  CAS  Google Scholar 

  71. J. K. Tavares, A. A. U. de Souza, J. V. de Oliveira, W. L. Priamo, and S. M. A. G. U. de Souza, OpenNano, 1, 25 (2016).

    Article  Google Scholar 

  72. Y. Fu and W. J. Kao, Expert Opin. Drug Deliv., 7, 429 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. D. G. Kanjickal and S. T. Lopina, Crit. Rev. Therapeut. Drug Carrier Syst., 21, 345 (2004).

    Article  CAS  Google Scholar 

  74. T. Higuchi, J. Pharm. Sci., 50, 874 (1961).

    Article  CAS  PubMed  Google Scholar 

  75. U. Y. Nayak, S. Gopal, S. Mutalik, A. K. Ranjith, M. S. Reddy, P. Gupta, and N. Udupa, J. Microencapsul., 26, 214 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. M. A. Quadir, M. S. Rahman, M. Z. Karim, S. Akter, M. T. Awkat, and M. S. Reza, Pakistan J. Pharm. Sci., 16, 17 (2003).

    CAS  Google Scholar 

  77. M.-M. Yin, Y. Zheng, and F.-l. Chen, J. Integrat. Agric., 17, 1822 (2018).

    Article  CAS  Google Scholar 

  78. K. G. H. Desai and H. J. Park, Drug Develop. Res., 64, 114 (2005).

    Article  CAS  Google Scholar 

  79. S. C. Oliveira, F. M. Pereira, A. Ferraz, F. T. Silva, and A. R. Goncalves, Appl. Biochem. Biotechnol., 84–86, 595 (2000).

    Article  PubMed  Google Scholar 

  80. Y.-L. Xie, W. Jiang, F. Li, Y. Zhang, X.-Y. Liang, M. Wang, X. Zhou, S.-Y. Wu, and C.-H. Zhang, Bull. Environ. Contamin. Toxicol., 104, 149 (2020).

    Article  CAS  Google Scholar 

  81. X. Li, B. Han, X. Wang, X. Gao, F. Liang, X. Qu, and Z. Yang, J. Mater. Chem. B, 3, 8884 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. G. Singhvi and M. Singh, Int. J. Pharm. Studies Res., 11, 77 (2011).

    Google Scholar 

  83. P. Sriamornsak, N. Thirawong, Y. Weerpol, J. Nunthanid, and S. Sungthongjeen, Eur. J. Pharm. Biopharm., 67, 211 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. E. Gudiño, C. M. Oishi, and A. Sequeira, Int. J. Numerical Methods Eng., 114, 292 (2018).

    Article  Google Scholar 

  85. J. Ostrowska-Czubenko, M. Gierszewska, and M. Pieróg, J. Polym. Res., 22, 153 (2015).

    Article  CAS  Google Scholar 

  86. A. Srinatha, J. K. Pandit, and S. Singh, Indian J. Pharm. Sci., 70, 16 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

One of us (Ozioma Udochukwu Akakuru) is grateful to Prof. Aiguo Wu of Cixi Institute of the Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China in whose laboratory the first draft of this manuscript was prepared. We thank Dr. Elias E. Elemike and Mr. Romanus C. Uwaoma of the Department of Chemistry and Chemical Resource Beneficiation, respectively, of Northwest University, South Africa for assistance with FT-IR, TGA and SEM studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikenna Onyido.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akakuru, O.U., Onyido, I. Controlled Release Formulations of 2,4-Dichlorophenoxyacetic Acid with Ecofriendly Matrices for Agricultural and Environmental Sustainability. Macromol. Res. 29, 40–53 (2021). https://doi.org/10.1007/s13233-021-9004-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-021-9004-9

Keywords

Navigation