Skip to main content
Log in

Synthesis and characterizations of hybrid PEG-Fe3O4 nanoparticles for the efficient adsorptive removal of dye and antibacterial, and antibiofilm applications

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Purpose

Dyes are highly toxic coloured compounds in nature that are largely applied in paper, food, textile and printing industries. Here, the adsorption technique was performed to remove methyl orange (MO) dye from water by polyethylene glycol (PEG) modified iron oxide nanoparticles (Fe3O4 NPs).

Methods

The method used for Fe3O4 NPs synthesis was chemical precipitation. The particles were analyzed by transmission electron microscope, magnetometer, BET analyzer, fourier-transform infrared spectroscopy, X-ray powder diffraction, zetasizer and particle size analyzer. The influence of pH (4.0 to 10.0), NaCl concentration (0.01 mM to 2 M), adsorbent dosage (1 to 10 mg), and the role of surface charge on adsorptive removal were investigated.

Results

The NPs size, zeta potential and surface area was found to be 26 ± 1.26 nm, 33.12 ± 1.01 mV and 119 m2/g respectively. The adsorption of MO on Fe3O4 NPs agreed best to Freundlich model (R2 = 0.965) when compared with Langmuir model (R2 = 0.249). By comparing pseudo-first-order kinetic model (R2 = 0.937), kinetic adsorption study was better followed by pseudo-second-order kinetic model (R2 = 1). The adsorption rate decreased with increasing NaCl concentration. At pH 4, maximum adsorption was noted. The particles were also exhibited excellent antibacterial and antibiofilm activities. The ROS formation, lipid peroxidation and oxidative stress were increased with increase in NPs concentration. The NPs precoated slides exhibited more than 50% growth inhibition.

Conclusion

The investigation denotes the versatile applications of the prepared particles for removing the dye stuffs from industrial effluents and as antibacterial and antibiofilm agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. F. Fard, M. E. K. Sar, M. Fahiminia, N. Mirzaei, N. Yousefi, H. J. Mansoorian, Efficiency of multi walled carbon nanotubes for removing direct blue 71 from aqueous solutions, Eurasian journal of analytical chemistry, 12 (2018).

    Google Scholar 

  2. Malek NNA, Jawad AH, Abdulhameed AS, Ismail K, Hameed BH. New magnetic Schiff's base-chitosan-glyoxal/fly ash/Fe3O4 biocomposite for the removal of anionic azo dye: an optimized process. Int J Biol Macromol. 2020;1461:530.

    Article  Google Scholar 

  3. Ashrafi SD, Kamani H, Soheil Arezomand H, Yousefi N, Mahvi AH. Optimization and modeling of process variables for adsorption of basic blue 41 on NaOH-modified rice husk using response surface methodology. Desalin Water Treat. 2016;57:14051–9.

    Article  CAS  Google Scholar 

  4. Gupta VK, Mittal A, Krishnan L, Gajbe V. Adsorption kinetics and column operations for the removal and recovery of malachite green from wastewater using bottom ash. Sep Purif Technol. 2004;40:87–96.

    Article  CAS  Google Scholar 

  5. Sandra JC, Lonnie RB, Donna FK, Daniel RD, Louis T, Frederick AB. Toxicity and metabolism of malachite green and leuco malachite green during short-term feeding to Fischer 344 rats and B6C3F1 mice. Chem Biol Interact. 1999;122:153–70.

    Article  Google Scholar 

  6. Culp SJ, Beland FA. Malachite green: a toxicological review. Int J Toxicol. 1996;15:219–38.

    Google Scholar 

  7. Ghadiri SK, Alidadi H, Nezhad NT, Javid A, Roudbari A, Talebi SS, et al. Valorization of biomass into amine- functionalized bio graphene for efficient ciprofloxacin adsorption in water-modeling and optimization study. PLoS One. 2020;15:e0231045.

    Article  CAS  Google Scholar 

  8. Robinson T, Chandran B, Nigam P. Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw. Water Resources. 2002;36:2824–30.

    CAS  Google Scholar 

  9. Javid A, Roodbari AA, Yousefi N, Fard MA, Barkdoll B, Talebi SS, et al. Modeling of chromium (VI) removal from aqueous solution using modified green-Graphene: RSM-CCD approach, optimization, isotherm, and kinetic studies. J Environ Health Sci Eng. 2020;18:1–15.

    Article  Google Scholar 

  10. Srivastava S, Sinha R, Roy D. Toxicological effects of malachite green. Aquat Toxicol. 2004;66:319–29.

    Article  CAS  Google Scholar 

  11. Daneshvar N, Salari D, Khataee AR. Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters. J Photochemistry Photobiology A. 2003;157:111–6.

    Article  CAS  Google Scholar 

  12. Bazgir A, Khorshidi A, Kamani H, Ashrafi SD, Naghipour D. Modeling of azo dyes adsorption on magnetic NiFe2O4/RGO nanocomposite using response surface methodology. J Environ Health Sci Eng. 2019;17:931–47.

    Article  CAS  Google Scholar 

  13. Kamari S, Shahbazi A. Biocompatible Fe3O4@SiO2-NH2 nanocomposite as a green nanofiller embedded in PES-nanofiltration membrane matrix for salts, heavy metal ion and dye removal: long-term operation and reusability tests. Chemosphere. 2020;243:125282.

    Article  CAS  Google Scholar 

  14. Xu P, Zeng GM, Huang DL, Lai C, Zhao MH, Wei Z, et al. Adsorption of Pb(II) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium: equilibrium, kinetic, thermodynamic and mechanisms analysis. Chem Eng J. 2012;203:423–31.

    Article  CAS  Google Scholar 

  15. Mittal H, Mishra SB. Gum ghatti and Fe3O4 magnetic nanoparticles based nanocomposites for the effective adsorption of rhodamine B. Carbohydrate Polymer. 2014;101:1255–64.

    Article  CAS  Google Scholar 

  16. García-Jimeno S, Estelrich J. Ferro fluid based on polyethylene glycol-coated iron oxide nanoparticles: characterization and properties. Colloids Surf A Physicochem Eng Asp. 2013;420:74–81.

    Article  Google Scholar 

  17. Kharazmi S, Taheri-Kafrani A, Soozanipour A. Efficient immobilization of pectinase on trichlorotriazine-functionalized polyethylene glycol-grafted magnetic nanoparticles: a stable and robust nanobiocatalyst for fruit juice clarification. Food Chem. 2020;325:126890.

    Article  CAS  Google Scholar 

  18. Faraji M, Yamini Y, Tahmasebi E, Saleh A, Nourmohammadian F. Cetyltrimethylammonium bromide-coated magnetite NPs as highly efficient adsorbent for rapid removal of reactive dyes from the textile companies’ wastewaters. J Iran Chem Soc. 2010;7:130–44.

    Article  Google Scholar 

  19. Kamani H, Safari GH, Asgari G, Ashrafi SD. Data on modeling of enzymatic elimination of direct red 81 using response surface methodology. Data Brief. 2018;18:80–6.

    Article  Google Scholar 

  20. Mehrabian F, Kamani H, Safari GH, Asgari G, Ashrafi SD. Direct blue 71 removal from aqueous solution by laccase-mediated system; a dataset. Data in Brief. 2018;19:437–43.

    Article  Google Scholar 

  21. Kim JH, Cha BJ, Kim YD, Seo HO. Kinetics and thermodynamics of methylene blue adsorption on the Fe-oxide nanoparticles embedded in the mesoporous SiO2. Adv Powder Technol. 2020;31:816–26.

    Article  CAS  Google Scholar 

  22. Bar-Or D, Rael LT, Lau EP, Rao NK, Thomas GW, Winkler JV. An analog of the human albumin N-terminus (asp-Ala-his-Lys) prevents formation of copper-induced reactive oxygen species. Biochem Biophys Res Commun. 2001;284:856–62.

    Article  CAS  Google Scholar 

  23. Moron MS, Kepeierre JW. Levels of glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta. 1979;582:67–8.

    Article  CAS  Google Scholar 

  24. Jeong Y, Park JI, Ha MG, Bae JS, Choi Y, Choi SA, et al. Effect of hydrogenated iron oxide nanoparticles with regular spherical shape by underwater plasma discharge treatment for high-efficiency water purification. Ceram Int. 2020;46:23582–91.

    Article  CAS  Google Scholar 

  25. Bidast S, Golchin A, Baybordi A, Zamani A, Naidu R. The effects of non-stabilised and Na-carboxymethylcellulose-stabilised iron oxide nanoparticles on remediation of co-contaminated soils. Chemosphere. 2020;261:128123.

    Article  CAS  Google Scholar 

  26. Aghazadeh M, Karimzadeh I, Ganjali MR, Behzad A. Mn2+-doped Fe3O4 nanoparticles: a novel preparation method, structural, magnetic and electrochemical characterizations. J Mater Sci Mater Electron. 2017;28:18121–9.

    Article  CAS  Google Scholar 

  27. Aghazadeh M, Karimzadeh I, Ganjali MR. PVP capped Mn2+ doped Fe3O4 nanoparticles: a novel preparation method, surface engineering and characterization. Mater Lett. 2018;228:137–40.

    Article  CAS  Google Scholar 

  28. Aghazadeh M. Electrochemical synthesis of dextran-and polyethyleneimine-coated superparamagnetic iron oxide nanoparticles and investigation of their physico-chemical characters. Analytical Bioanalytical Electrochem. 2019;11:362–72.

    CAS  Google Scholar 

  29. He HK, Gao C. Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles. ACS Appl Mater Interfaces. 2010;2:3201–10.

    Article  CAS  Google Scholar 

  30. P. E. Dim, Adsorption of methyl red and methyl orange using different tree bark powder, academic research international, 4 (2013).

    Google Scholar 

  31. Ghaedi M, Heidarpour SH, Kokhdan SN, Sahraie R, Daneshfar A, Brazesh B. Comparison of silver and palladium nanoparticles loaded on activated carbon for efficient removal of methylene blue: kinetic and isotherm study of removal process. Powder Technol. 2012;228:18–25.

    Article  CAS  Google Scholar 

  32. Jahangiri K, Yousefi N, Ghadiri SK, Fekri R, Bagheri A, Talebi SS. Enhancement adsorption of hexavalent chromium onto modified fly ash from aqueous solution; optimization; isotherm, kinetic and thermodynamic study. J Dispers Sci Technol. 2019;40:1147–58.

    Article  CAS  Google Scholar 

  33. Gholami Z, Ghadiri SK, Avazpour M, Fard MA, Yousefi N, Talebi SS, et al. Removal of phosphate from aqueous solutions using modified activated carbon prepared from agricultural waste (populous caspica): optimization, kinetic, isotherm, and thermodynamic studies. Desalin Water Treat. 2018;133:177–90.

    Article  CAS  Google Scholar 

  34. Baocheng Q, Jiti Z, Xuemin X, Chunil Z, Hongxia Z, Xiaobai Z. Adsorption behavior of Azo dye C. I. Acid red 14 in aqueous solution on surface soils. J Environ Sci. 2008;20:704–9.

    Article  Google Scholar 

  35. Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34:451–6.

    Article  CAS  Google Scholar 

  36. Dalvand A, Nabizadeh R, Ganjali MR, Khoobi M, Nazmara S, Mahvi AH. Modeling of reactive blue 19 azo dye removal from colored textile wastewater using L-arginine-functionalized Fe3O4 nanoparticles: optimization, reusability, kinetic and equilibrium studies. J Magn Magn Mater. 2016;404:179–89.

    Article  CAS  Google Scholar 

  37. Mahvi AH, Dalvand A. Kinetic and equilibrium studies on the adsorption of direct red 23 dye from aqueous solution using montmorillonite nanoclay. Water Quality Res J. 2020;55:132–44.

    Article  Google Scholar 

  38. Pormazar SM, Ehrampoush MH, Ghaneian MT, Khoobi M, Talebi P, Dalvand A. Application of amine-functioned Fe3O4 nanoparticles with HPEI for effective humic acid removal from aqueous solution: modeling and optimization. Korean J Chem Eng. 2020;37:93–104.

    Article  CAS  Google Scholar 

  39. Robati D, Mirza B, Rajabi M, Moradi O, Tyagi I, Agarwal S, et al. Removal of hazardous dyes-BR 12 and methyl orange using graphene oxide as an adsorbent from aqueous phase. Chem Eng J. 2016;284:687–97.

    Article  CAS  Google Scholar 

  40. Arshadi M, Faraji AR, Mehravar M. Dye removal from aqueous solution by cobalt-nano particles decorated aluminum silicate: kinetic, thermodynamic and mechanism studies. J Colloid Interface Sci. 2015;440:91–101.

    Article  CAS  Google Scholar 

  41. Ma Q, Shen F, Lu X, Bao W, Ma H. Studies on the adsorption behavior of methyl orange from dye wastewater onto activated clay. Desalin Water Treatment. 2013;51:3700–9.

    Article  CAS  Google Scholar 

  42. Uddin MK, Baig U. Synthesis of Co3O4 nanoparticles and their performance towards methyl orange dye removal: characterisation, adsorption and response surface methodology. J Clean Prod. 2019;211:1141–53.

    Article  CAS  Google Scholar 

  43. Jiang R, Fu YQ, Zhu HY, Yao J, Xiao L. Removal of methyl orange from aqueous solutions by magnetic maghemite/chitosan nanocomposite films: adsorption kinetics and equilibrium. J Appl Polym Sci. 2012;125:540–9.

    Article  Google Scholar 

  44. Jiang T, Liang YD, He YJ, Wang Q. Activated carbon/NiFe2O4 magnetic composite: a magnetic adsorbent for the adsorption of methyl orange. J Environ Chem Eng. 2015;3:1740–51.

    Article  CAS  Google Scholar 

  45. Ghaedi M, Rahimi MR, Ghaedi AM, Tyagi I, Agarwal S, Gupta VK. Application of least squares support vector regression and linear multiple regression for modeling removal of methyl orange onto tin oxide nanoparticles loaded on activated carbon and activated carbon prepared from Pistaciaatlantica wood. J Colloid Interface Sci. 2016;461:425–34.

    Article  CAS  Google Scholar 

  46. Groiss S, Selvaraj R, Varadavenkatesan T, Vinayagam R. Structural characterization, antibacterial and catalytic effect of iron oxide nanoparticles synthesised using the leaf extract of Cynometraramiflora. J Mol Struct. 2017;1128:572–8.

    Article  CAS  Google Scholar 

  47. Irshad R, Tahir K, Li B, Ahmad A, Siddiqui AR, Nazir S. Antibacterial activity of biochemically capped iron oxide nanoparticles: a view towards green chemistry. J Photochem Photobiol B. 2017;170:241–6.

    Article  CAS  Google Scholar 

  48. Muthukumar H, Chandrasekaran NI, Mohammed SN, Pichiah S, Manickam M. Iron oxide nano-material: physicochemical traits and in vitro antibacterial propensity against multidrug resistant bacteria. J Industrial Eng Chem. 2017;45:121–30.

    Article  CAS  Google Scholar 

  49. Jeng HA, Swanson J. Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health Part A. 2006;41:2699–711.

    Article  CAS  Google Scholar 

  50. Singh N, Jenkins GJS, Asadi R, Doak SH. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. 2010;1:5358.

    Article  Google Scholar 

  51. Radu M, Munteanu MC, Petrache S, Serban AI, Dinu D, Hermenean A, et al. Depletion of intracellular glutathione and increased lipid peroxidation mediate cytotoxicity of hematite nanoparticles in MRC-5 cells. Acta Biochim Pol. 2010;57:355.

    Article  CAS  Google Scholar 

  52. Li H, Zhou Q, Wu Y, Fu J, Wang T, Jiang G. Effects of waterborne nano-iron on medaka (Oryziaslatipes): antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicol Environ Saf. 2009;72:684–92.

    Article  CAS  Google Scholar 

  53. Wahab R, Mishra A, Yun SI, Kim YS, Shin H-S. Antibacterial activity of ZnO nanoparticles prepared via non-hydrolytic solution route. Appl Microbiol Biotechnol. 2010;87:1917–25.

    Article  CAS  Google Scholar 

  54. Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H, et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano. 2008;2:2121–34.

    Article  CAS  Google Scholar 

  55. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TE, Handy RD, Lyon DY, et al. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem. 2008;27:1825–51.

    Article  CAS  Google Scholar 

  56. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007;3:95–101.

    Article  CAS  Google Scholar 

  57. Li N, Xia T, Nel AE. The role of oxidative stress in ambient particulate matter-induced lung diseases and its impli- cations in the toxicity of engineered nanoparticles. Free Radic Biol Med. 2008;44:1689–99.

    Article  CAS  Google Scholar 

  58. Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, et al. Unique cellular interaction of silver nanoparticles: size- dependent generation of reactive oxygen species. J Phys Chem B. 2008;112:13608–19.

    Article  CAS  Google Scholar 

  59. Chen Z, Yin J-J, Zhou Y-T, Zhang Y, Song L, Song M, et al. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano. 2012;6:4001–12.

    Article  CAS  Google Scholar 

  60. Alarifi S, Ali D, Alkahtani S, Alhader MS. Iron oxide nanoparticles induce oxidative stress, DNA damage, and caspase activation in the human breast cancer cell line. Biol Trace Elem Res. 2014;159:416–24.

    Article  CAS  Google Scholar 

  61. Akhil K, Jayakumar J, Gayathri G, Sudheer Khan S. Effect of various capping agents on photocatalytic, antibacterial and antibiofilm activities of ZnO nanoparticles. J Photochem Photobiol B. 2016;160:32–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank the management of Bannari Amman Institute of Technology for providing facility to carry out the work. The authors extend their appreciation to the Researchers supporting project number (RSP-2020/190) King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sudheer Khan.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janani, B., Al-Mohaimeed, A.M., Raju, L.L. et al. Synthesis and characterizations of hybrid PEG-Fe3O4 nanoparticles for the efficient adsorptive removal of dye and antibacterial, and antibiofilm applications. J Environ Health Sci Engineer 19, 389–400 (2021). https://doi.org/10.1007/s40201-021-00612-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-021-00612-1

Keywords

Navigation