Skip to main content
Log in

On the quasi-static approximation in the initial boundary value problem of linearised elastodynamics

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Continuous data dependence estimates are employed to rigorously derive conditions that validate the quasi-static approximation for the initial homogeneous boundary value problem in the theory of small elastic deformations superposed upon large elastic deformations. This theory imposes no sign-definite assumptions on the linearised elastic moduli and in consequence the requisite estimates are established using methods principally motivated by known Lagrange identity arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boley BA, Weiner JK (1960) Theory of thermal stresses. Wiley, New York

    MATH  Google Scholar 

  2. Duhamel JMC (1837) Second mémoire sur les phénomènes thermo-mecaniques. J de l’École Polytech 15:1–57

    Google Scholar 

  3. Quintanilla R (2004) Spatial stability for the quasi-static problem of thermoelasticity. J Elast 76:93–105

    Article  MathSciNet  Google Scholar 

  4. Gilchrist MD, Rashid B, Murphy JG, Saccomandi JG (2013) Quasi-static deformations of biological soft tissue. Math Mech Solids 18:622–633

    Article  MathSciNet  Google Scholar 

  5. Pucci E, Saccomandi G (2010) On a special class of nonlinear viscoelastic solids. Math Mech Solids 15:803–811

    Article  MathSciNet  Google Scholar 

  6. Pucci E, Saccomandi G (2012) On the nonlinear theory of viscoelasticity of differential type. Math Mech Solids 17:624–630

    Article  MathSciNet  Google Scholar 

  7. Dafermos CM (1968) On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity. Arch Ration Mech Anal 29:241–271

    Article  MathSciNet  Google Scholar 

  8. Dafermos CM (1976) Contraction semigroups and trend to equilibrium in continuum mechanics. Lectures notes in mathematics, vol 503. Springer, Berlin, pp 295–306

    Google Scholar 

  9. Lebau G, Zuazua E (1999) Decay rates for the three-dimensional linear system of thermoelasticity. Arch Ration Mech Anal 148:179–231

    Article  MathSciNet  Google Scholar 

  10. Day WA (1981) Justification of the uncoupled quasi-static approximation in the problem of dynamic thermoelasticity. Arch Ration Mech Anal 77:387–396

    Article  Google Scholar 

  11. Day WA (1982) Further justification of the uncoupled quasi-static approximations in thermoelasticity. Arch Ration Mech Anal 79:85–95

    Article  Google Scholar 

  12. Esham BF, Weinacht RJ (1994) Singular perturbations and the coupled/quasi-static approximation in linear thermoelasticity. SIAM J Math Anal 25:1521–1536

    Article  MathSciNet  Google Scholar 

  13. Esham BF, Weinacht RJ (1999) Limitation of the coupled/quasi-static approximation in multidimensional linear thermoelasticity. Appl Anal 73:72–87

    Article  Google Scholar 

  14. Knops RJ, Quintanilla R (2018) Quasi-static approximations in linear thermoelastodynamics. J Thermal Stress 41:1432–1449

    Article  Google Scholar 

  15. Ames KA, Straughan B (1999) Non-standard and improperly posed problems. Mathematics in science and engineering, vol 194. Academic Press, San Diego

    Google Scholar 

  16. Brun L (1969) Méthodes énergetiques dans les systemes évolutifs linéaires. Deuxieme Partie: Théorèmes d’ unicité. J de Méchanique 8:167–192

    MATH  Google Scholar 

  17. Chirita S, Rionero S (1987) The Lagrange identity method in linear thermoelasticity. Int J Eng Sci 25:935–947

    Article  MathSciNet  Google Scholar 

  18. Flavin JN, Rionero S (1996) Qualitative estimates for partial differential equations. An introduction. CRC Press, Boca Raton

    MATH  Google Scholar 

  19. Knops RJ, Payne LE (1988) Improved estimates for continuous data dependence in linear elastodynamics. Math Proc Camb Philos Soc 103:535–559

    Article  MathSciNet  Google Scholar 

  20. Knops RJ, Payne LE (1971) Uniqueness theorems in linear elasticity. Springer tracts in natural philosophy, vol 19. Springer, Berlin

    Book  Google Scholar 

  21. Green AE, Rivlin RS, Shield RT (1952) General theory of small elastic deformations superposed upon finite elastic deformations. Proc R Soc Lond A 211:128–154

    Article  Google Scholar 

  22. Knops RJ (2019) On the quasi-static approximation to the initial traction boundary value problem of linear elastodynamics. In: New achievements in continuum mechanics (dedicated to Wolfgang Muller). Advanced structural materials. Springer Nature

  23. Mitriović DS (1970) Analytic inequalities. Springer, Berlin

    Book  Google Scholar 

Download references

Acknowledgements

The work of R. Quintanilla has been supported by Ministerio de Economía y Competitividad under the research project “Análisis Matemático de Problemas de la Termomecánica” (MTM2016-74934-P), (AEI/FEDER, UE), and Ministerio de Ciencia, Innovación y Universidades under the research project “Análisis matemático aplicado a la termomecánica” (PID2019-105118GB-I00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Knops.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

For ease reference, we list without proof two key results previously derived in [19]. Notation has been altered to that adopted here, and a body-force vector f(xt) per unit mass is now included in the equation of motion (2.1) . We have for \(0\le 2t\le T\) [19, eqn.(2.17)]:

$$\begin{aligned} 2\int _{\Omega (t)}\rho u_i(t) u_{i,t} (t)\, \mathrm{d}x= & {} \int _0^t \int _{\Omega (\eta )} \rho [u_i(2t-\eta )f_i(\eta )-u_i(\eta )f_i(2t-\eta )]\, \mathrm{d}x\, \mathrm{d}\eta \nonumber \\&+\int _{\Omega (t)} \rho u_i(2t) u_i^{(1)}\mathrm{d}x+\int _{\Omega (t)} \rho u_{i,t}(2t) u_i^{(0)}\mathrm{d}x. \end{aligned}$$
(A.1)

Secondly, when \(f_i=0\), the following bound holds [19, eqn.(3.22)] for \(0\le 2t\le T\):

$$\begin{aligned} \int _{\Omega (t)} \rho u_i(t) u_{i,t} (t)\, \mathrm{d}x\le \frac{ T}{4} \int _{\Omega } \rho u_i^{(0)} u_i^{(0)}\mathrm{d}x + \frac{M_1 T^{1/2}}{4} \left[ \int _{\Omega } \rho u_i^{(0)} u_i^{(0)}\mathrm{d}x +\frac{T}{\sqrt{2}} \int _{\Omega } \rho u_i^{(1)} u_i^{(1)}\mathrm{d}x\right] , \end{aligned}$$
(A.2)

where \(M_1\) is given by (3.22).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knops, R.J., Quintanilla, R. On the quasi-static approximation in the initial boundary value problem of linearised elastodynamics. J Eng Math 126, 11 (2021). https://doi.org/10.1007/s10665-020-10072-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10665-020-10072-5

Keywords

Navigation