Skip to main content
Log in

Improving small molecule force fields by identifying and characterizing small molecules with inconsistent parameters

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Many molecular simulation methods use force fields to help model and simulate molecules and their behavior in various environments. Force fields are sets of functions and parameters used to calculate the potential energy of a chemical system as a function of the atomic coordinates. Despite the widespread use of force fields, their inadequacies are often thought to contribute to systematic errors in molecular simulations. Furthermore, different force fields tend to give varying results on the same systems with the same simulation settings. Here, we present a pipeline for comparing the geometries of small molecule conformers. We aimed to identify molecules or chemistries that are particularly informative for future force field development because they display inconsistencies between force fields. We applied our pipeline to a subset of the eMolecules database, and highlighted molecules that appear to be parameterized inconsistently across different force fields. We then identified over-represented functional groups in these molecule sets. The molecules and moieties identified by this pipeline may be particularly helpful for future force field parameterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

FF:

Force field

QM:

Quantum mechanical

TFD:

Torsion fingerprint deviation

RMSD:

Root-mean-square deviation

MMFF:

Merck molecular force field

GAFF:

General AMBER force field

SMIRNOFF:

SMIRKS native open force field

References

  1. Bayly C, McKay D, Truchon J (2010) An Informal AMBER Small Molecule Force Field: Parm@ Frosst. http://www.ccl.net/cca/data/parm_at_Frosst/

  2. Chodera J, Qiu Y, Boothroyd S, Wang L-P, Mobley D (2019) The Open Force Field 1.0 small molecule force field, our first optimized force field (codename “Parsley”)

  3. Dauber-Osguthorpe P, Hagler AT (2018) Biomolecular force fields: where have we been, where are we now, where do we need to go and how do we get there? J Comput Aided Mol Des. https://doi.org/10.1007/s10822-018-0111-4

    Article  PubMed  Google Scholar 

  4. Eastman P, Swails J, Chodera JD, McGibbon RT, Zhao Y, Beauchamp KA, Wang L-P, Simmonett AC, Harrigan MP, Stern CD, Wiewiora RP, Brooks BR, Pande VS (2017) OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLOS Comput Biol 13(7):e1005659

    Article  Google Scholar 

  5. eMolecules (2015) eMolecules Database Download. https://www.emolecules.com/info/plus/download-database

  6. Fennell CJ, Wymer KL, Mobley DL (2014) A fixed-charge model for alcohol polarization in the condensed phase, and its role in small molecule hydration. J Phys Chem B 118(24):6438–6446 Publisher: American Chemical Society

    Article  CAS  Google Scholar 

  7. Hagler AT (2018) Force field development phase II: relaxation of physics-based criteria... or inclusion of more rigorous physics into the representation of molecular energetics. J Comput Aided Mol Des 33:205–264

    Article  Google Scholar 

  8. Haider N (2020) Checkmol/Matchmol Homepage. http://merian.pch.univie.ac.at/~nhaider/cheminf/cmmm

  9. Haider N (2010) Functionality pattern matching as an efficient complementary structure/reaction search tool: an open-source approach. Molecules 15(8):5079–5092

    Article  CAS  Google Scholar 

  10. Halgren TA (1992) The representation of van der Waals (vdW) interactions in molecular mechanics force fields: Potential form, combination rules, and vdW parameters. J Am Chem Soc 114(20):7827–7843

    Article  CAS  Google Scholar 

  11. Halgren TA (1996a) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 17(5–6):490–519

    Article  CAS  Google Scholar 

  12. Halgren TA (1996b) Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J Comput Chem 17(5–6):520–552

    Article  CAS  Google Scholar 

  13. Halgren TA (1996c) Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94. J Comput Chem 17(5–6):553–586

    Article  CAS  Google Scholar 

  14. Halgren TA (1996d) Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data, and empirical rules. J Comput Chem 17(5–6):616–641

    Article  CAS  Google Scholar 

  15. Halgren TA (1999) MMFF VI. MMFF94s option for energy minimization studies. J Comput Chem 20(7):720–729

    Article  CAS  Google Scholar 

  16. Halgren TA, Nachbar RB (1996) Merck molecular force field. IV. conformational energies and geometries for MMFF94. J Comput Chem 17(5–6):587–615

    CAS  Google Scholar 

  17. Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang JY, Wang L, Lupyan D, Dahlgren MK, Knight JL, Kaus JW, Cerutti DS, Krilov G, Jorgensen WL, Abel R, Friesner RA (2016) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput 12(1):281–296

    Article  CAS  Google Scholar 

  18. Hawkins PCD, Skillman AG, Warren GL, Ellingson BA, Stahl MT (2010) Conformer generation with OMEGA: algorithm and validation using high quality structures from the protein databank and Cambridge structural database. J Chem Inf Model 50(4):572–584

    Article  CAS  Google Scholar 

  19. Jakalian A, Bush BL, Jack DB, Bayly CI (2000) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J Comput Chem 21(2):132–146

    Article  CAS  Google Scholar 

  20. Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23(16):1623–1641

    Article  CAS  Google Scholar 

  21. Jang H (2020) Update on Parsley minor releases (openff-1.1.0, 1.2.0)

  22. Jang H, Maat J, Qiu Y, Smith DG, Boothroyd S, Wagner J, Bannan CC, Gokey T, Lim VT, Lucas X, Tjanaka B, Shirts MR, Gilson MK, Chodera JD, Bayly CI, Mobley DL, Wang L-P (2020) Openforcefield/openforcefields: Version 1.2.0 “Parsley” Update. Zenodo

  23. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  CAS  Google Scholar 

  24. Lim VT, Hahn DF, Tresadern G, Bayly CI, Mobley D (2020) Benchmark assessment of molecular geometries and energies from small molecule force fields. chemRxiv

  25. Maat J (2020) Training dataset selection

  26. Mobley DL, Bannan CC, Rizzi A, Bayly CI, Chodera JD, Lim VT, Lim NM, Beauchamp KA, Shirts MR, Gilson MK, Eastman PK (2018a) Open Force Field Consortium: escaping atom types using direct chemical perception with SMIRNOFF v0.1. bioRxiv, p. 286542

  27. Mobley DL, Bannan CC, Rizzi A, Bayly CI, Chodera JD, Lim VT, Lim NM, Beauchamp KA, Slochower DR, Shirts MR, Gilson MK, Eastman PK (2018b) Escaping atom types in force fields using direct chemical perception. J Chem Theory Comput 14:11

    Article  Google Scholar 

  28. Nash SG, Nocedal J (1991) A numerical study of the limited memory BFGS method and the truncated-Newton method for large scale optimization. SIAM J Optim 1(3):358–372

    Article  Google Scholar 

  29. Qiu Y, Smith DGA, Boothroyd S, Wagner J, Bannan CC,Gokey T, Jang H, Lim VT, Stern CD, Rizzi A, Lucas X,Tjanaka B, Shirts MR, Gilson MK, Chodera JD, BaylyCI, Mobley DL, Wang L-P (2019) Introducing the firstoptimized Open Force Field 1.0.0 (codename ”Parsley”)

  30. Roos K, Wu C, Damm W, Reboul M, Stevenson JM, Lu C, Dahlgren MK, Mondal S, Chen W, Wang L, Abel R, Friesner RA, Harder ED (2019) OPLS3e: extending force field coverage for drug-like small molecules. J Chem Theory Comput 15(3):1863–1874

    Article  CAS  Google Scholar 

  31. Schulz-Gasch T, Schärfer C, Guba W, Rarey M (2012a) TFD: Torsion Fingerprints as a new measure to compare small molecule conformations. J Chem Inf Model 52(6):1499–1512

    Article  CAS  Google Scholar 

  32. Schulz-Gasch T, Schärfer C, Guba W, Rarey M (2012b) TFD: Torsion Fingerprints as a new measure to compare small molecule conformations. J Chem Inf Model 52(6):1499–1512

    Article  CAS  Google Scholar 

  33. Sellers BD, James NC, Gobbi A (2017) A comparison of quantum and molecular mechanical methods to estimate strain energy in drug like fragments. J Chem Inf Model 57(6):1265–1275

    Article  CAS  Google Scholar 

  34. Smith DGA, Altarawy D, Burns LA, Welborn M, Naden LN, Ward L, Ellis S, Pritchard BP, Crawford TD (2020) The MolSSI QCArchive project: an open-source platform to compute, organize, and share quantum chemistry data. WIREs Comput Mol Sci. https://doi.org/10.1002/wcms.1491

    Article  Google Scholar 

  35. ToolKit Szybki (2015) Version 1.9.0. OpenEye Scientific Software Inc., Santa Fe

    Google Scholar 

  36. Vanommeslaeghe K, MacKerell AD (2012) Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing. J Chem Inf Model 52(12):3144–3154

    Article  CAS  Google Scholar 

  37. Vanommeslaeghe K, Raman EP, MacKerell AD (2012) Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J Chem Inf Model 52(12):3155–3168

    Article  CAS  Google Scholar 

  38. Wagner J (2020) Openforcefield/openforcefields: Version 1.1.0 “Parsley” Update. Zenodo

  39. Wang J (2017) A snapshot of GAFF2 development

  40. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174

    Article  CAS  Google Scholar 

  41. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25(2):247–260

    Article  Google Scholar 

  42. Wlodek S, Skillman A, Nicholls A (2010) Ligand entropy in gas-phase, upon solvation and protein complexation. fast estimation with quasi-Newton Hessian. J Chem Theory Comput 6(7):2140–2152

    Article  CAS  Google Scholar 

Download references

Acknowledgements

JNE appreciates financial support from the National Institute of Health (R01GM108889). VTL appreciates funding from the National Science Foundation Graduate Research Fellowship Program. CCB appreciates financial support from The Molecular Sciences Software Institute under NSF Grant ACI-154758. DLM appreciates financial support from the National Institutes of Health (R01GM108889 and R01GM132386) and the National Science Foundation (CHE 1352608). The contents of this paper are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Mobley.

Ethics declarations

Code and data availability

We provide the code used in this project in our GitHub repository (https://github.com/mobleylab/off-ffcompare and with a DOI at https://dx.doi.org/10.5281/zenodo.3995606). Additionally, at https://dx.doi.org/10.5281/zenodo.3995059 we provide a supporting data package. This includes a .csv file which has TanimotoCombo and TFD scores, SMILES strings, and eMolecules identifiers for all 2,698,456 molecules analyzed. Additionally, we provide optimized geometries of 265,847 molecules with four or more difference flags. An archived copy of the GitHub repository is provided in the electronic Supporting Information associated with this paper.

Disclaimers

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Disclosures

DLM is a member of the Scientific Advisory Board of OpenEye Scientific Software and an Open Science Fellow with Silicon Therapeutics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehrman, J.N., Lim, V.T., Bannan, C.C. et al. Improving small molecule force fields by identifying and characterizing small molecules with inconsistent parameters. J Comput Aided Mol Des 35, 271–284 (2021). https://doi.org/10.1007/s10822-020-00367-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-020-00367-1

Keywords

Navigation