Skip to main content
Log in

Analysis of lubrication performance for internal meshing gear pair considering vibration

考虑振动的内啮合齿轮副润滑特性分析

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The thermal elasto-hydrodynamic lubrication characteristics of the internal meshing gears in a planetary gear train under vibrations were examined considering the influence of the modification coefficient and time-varying meshing stiffness. Based on dynamic theory of the gear system, a dynamic model of the planetary gear train was established. The lubrication performances of modified gear systems under vibrations and static loads were analyzed. Compared with other transmission types, the best lubrication effect could be produced by the positive transmission. A thicker lubricating oil film could be formed, and the friction coefficient and oil film flash temperature are the smallest. Increasing modification coefficient improves the lubrication performance continuously but intensifies the engage-in and tooth-change impact. For the planetary and inner gears, the increase in the modification coefficient also leads a decrease in the oil film stiffness.

摘要

摘要为探究动载荷作用下行星齿轮的热弹流润滑特性, 综合考虑变位系数和时变啮合刚度的影响, 基于动力学理论, 建立行星齿轮系统的动力学模型, 分析振动与静载荷作用下变位齿轮系统的热弹流 润滑特性。研究表明:与其它传动类型相比, 采用正传动时, 行星齿轮与内齿轮啮合时的润滑效果最 佳, 轮齿间可以形成较厚的润滑油膜, 轮齿间的摩擦系数、油膜的最高温升最小, 并且, 随着行星齿 轮与内齿轮变位系数的增大, 润滑状况不断得到改善, 热胶合承载能力增强;行星齿轮与内齿轮变位 系数的增加降低了其啮合刚度, 增大了啮入冲击和换齿冲击, 同时降低了油膜的刚度。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HUANG Xing-bao, WANG You-qiang. Transient elastohydrodynamic lubrication analysis of spur gears under dynamic conditions [J]. Lubrication Engineering, 2015, 40(11): 65–70. DOI: https://doi.org/10.3969/j.issn.0254-0150.2015.11.013.

    Google Scholar 

  2. WANG Wen-zhong, CAO Hong. Numerical simulation of unsteady EHL lubrication of involute helical gears [J]. Tribology, 2011, 31(6): 604–609. DOI: https://doi.org/10.16078/j.tribology.2011.06.015.

    Google Scholar 

  3. SHI Gao-wei, WANG You-qiang. Influence of variable coiling and suction speed process on hot mixed lubrication of spur gear [J]. Lubrication Engineering, 2011, 36(1): 43–48. DOI: https://doi.org/10.3969/j.issn.0254-0150.2011.01.012.

    Google Scholar 

  4. BAO Pei-de. Study on elastohydrodynamic lubrication of planetary gear transmission [J]. Lubrication Engineering, 2011, 36(2): 12–16. DOI: 0254-0150(2011)2-012-5.

    Google Scholar 

  5. DAI Ling, PU Wei, WANG Jia-xu. Mixed EHL analysis of planetary drives with small teeth number difference considering real tooth geometry [J]. Lubrication Science, 2018, 30(6): 317–330. DOI: https://doi.org/10.1002/ls.1423.

    Article  Google Scholar 

  6. ZHAO Jing-jing, WANG You-qiang, ZHANG Ping, JIAN Guang-xiao. A Newtonian thermal elastohydrodynamic lubrication model for ferrofluid-lubricated involute spur gear pair [J]. Lubrication Science, 2020, 32(2): 33–45. DOI: https://doi.org/10.1002/ls.1483.

    Article  Google Scholar 

  7. WANG K L, CHENG HS. A numerical solution to the dynamic load, film thickness, and surface temperatures in spur gears, Part I: Analysis [J]. Transactions of the ASME, 1981, 103(1): 177–187. DOI: https://doi.org/10.1115/1.3254859.

    Google Scholar 

  8. WANG K L, CHENG H S. A numerical solution to the dynamic load, film thickness, and surface temperatures in spur gears, Part II: Results [J]. Transactions of the ASME, 1981, 103(1): 188–194. DOI: https://doi.org/10.1115/1.3254860.

    Google Scholar 

  9. WANG You-qiang, HE Zhi-cheng. Effect of impact load on transient elastohydrodynamic lubrication of involute spur gears [J]. Tribology Transactions, 2012, 55(2): 155–162. DOI: https://doi.org/10.1080/10402004.2011.639048.

    Article  Google Scholar 

  10. DE LA CRUZ M, CHONG WWF, TEODORESCU M, THEODOSSIADES S. Transient mixed thermo-elastohydrodynamic lubrication in multi-speed transmissions [J]. Tribology International, 2012(49): 17–29. DOI: https://doi.org/10.1016/j.triboint.2011.12.006.

  11. XUE Jian-hua, LI Wei, QIN Cai-yan. The scuffing load capacity of involute spur gear systems based on dynamic loads and transient thermal elastohydrodynamic lubrication [J]. Journal of Central South University (Science and Technology), 2014, 45(8): 2603–2609. (in Chinese)

    Google Scholar 

  12. LI S, KAHRAMAN A. A spur gear mesh interface damping model based on elastohydrodynamic behavior [J]. International Journal of Powertrains, 2011, 1(1): 4–21. DOI: https://doi.org/10.1504/ijpt.2011.041907.

    Article  Google Scholar 

  13. LI S, KAHRAMAN A. A tribo-dynamic model of a spur gear pair [J]. Journal of Sound and Vibration, 2013, 332: 4963–4978. DOI: https://doi.org/10.1016/j.jsv.2013.04.022.

    Article  Google Scholar 

  14. KANG Meng-ru. A study of quasi-static and dynamic behavior of double helical gears [M]. Ohio: The Ohio State University, 2014.

    Google Scholar 

  15. BARBIERI M, LUBRECHT A A, PELLICANO F. Behavior of lubricant fluid film in gears under dynamic conditions [J]. Tribology International, 2013, 62: 37–48. DOI: https://doi.org/10.1016/j.triboint.2013.01.017.

    Article  Google Scholar 

  16. HUANG Xing-bao, YANG Bin-tang. A nano lubrication solution for high-speed heavy-loaded spur gears and stiffness modelling [J]. Applied Mathematical Moedlling, 2019, 5(6): 262–272. DOI: https://doi.org/10.1016/j.apm.2019.03.008.

    MATH  Google Scholar 

  17. ZHANG Yuan-yuan, LIU Huai-ju. Oil film stiffness and damping in an elastohydrodynamic lubrication line contact-vibration [J]. Journal of Mechanical Science and Technology, 2016, 30(7): 3031–3039. DOI: https://doi.org/10.1007/s12206-016-0611-x.

    Article  Google Scholar 

  18. ZHOU Chang-jiang, XIAO Ze-liang, CHEN Si-yu, HAN Xu. Normal and tangential oil film stiffness of modified spur gear with non-Newtonian elastohydrodynamic lubrication [J]. Tribology International, 2016, 70(2): 112–120. DOI: https://doi.org/10.1016/j.triboint.2016.12.045.

    Google Scholar 

  19. ZOU Yu-jing, CHANG De-gong. Coupling analysis of dynamics and EHL for spur gears [J]. Journal of Aerospace Power, 2016, 31(4): 2010–2020. DOI: https://doi.org/10.13224/j.cnki.jasp.2016.08.028.

    Google Scholar 

  20. YUAN Shi-hua, DONG Hui-li, LI Xue-yuan. Analysis of lubricating performance for involute gear based on dynamic loading theory [J]. Journal of Mechanical Design, 2012, 134(12): 1–9. DOI: https://doi.org/10.1115/1.4007842.

    Article  Google Scholar 

  21. DONG Hui-li, YUAN Shi-hua, LI Xue-yuan. Analysis of lubricating performance for involute gear considering tribo-dynamic behavior [J]. Tribology, 2013, 33(5): 436–442. DOI: https://doi.org/10.16078/j.tribology.2013.05.012.

    Google Scholar 

  22. YUAN Shi-hua, DONG Hui-li, LI Xue-yuan. Dynamic loading analysis of involute gears considering lubrication performance [J]. Journal of Mechanical Engineering, 2012, 48(19): 10–16. DOI: https://doi.org/10.3901/jme.2012.19.010.

    Article  Google Scholar 

  23. PAN Bo, SUN Jing, YU Deng-yun, HU Hua-jun. Research on dynamic modeling and analysis of spur-planetary gear [J]. Journal of Dynamics and Control, 2018, 16(2): 121–128. DOI: https://doi.org/10.6052/1672-6553-2018-002.

    Google Scholar 

  24. SUN Tao, SHEN Yun-wen, SUN Zhi-min, LIU Ji-yan. Study on nonlinear dynamic behavior of planetary gear train dynamic model and governing equations [J]. Journal of Mechanical Engineering, 2002, 38(3): 1–10.

    Article  Google Scholar 

  25. LI Run-fang, WANG Jian-jun. Gear system dynamics [M]. Beijing: Science Press, 1997. (in Chinese)

    Google Scholar 

  26. TANG Jin-yuan, CAI Wei-xing, WANG Zhi-wei. Meshing stiffness formula of modification gear [J]. Journal of Central South University (Science and Technology), 2017, 48(2): 337–342. DOI: https://doi.org/10.11817/j.issn.1672-7207.2017.02.010. (in Chinese)

    Google Scholar 

  27. JIAN Guang-xiao, WANG You-qiang, ZHANG Ping, XIE Yi-nong. Analysis of lubricating performance for involute spur gear under vibration [J]. Lubrication Science, 2020, 32(7): 344–357. DOI: https://doi.org/10.1002/ls.1507.

    Article  Google Scholar 

  28. YANG Pei-ran. Numerical analysis of fluid lubrication [M]. Beijing: National Defense Industry Press, 1998. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by JIAN Guang-xiao and WANG You-qiang. JIAN Guang-xiao and WANG You-qiang put forward the research ideas. JIAN Guang-xiao, WANG You-qiang, ZHANG Ping, LI Yun-kai and LUO Heng established the models. JIAN Guang-xiao debugged the program, got the research data and accomplished the relevant analysis. The initial draft of the manuscript was written by JIAN Guang-xiao. All authors replied to reviewer’ comments and revised the final version.

Corresponding author

Correspondence to You-qiang Wang  (王优强).

Additional information

Conflict of interest

JIAN Guang-xiao, WANG You-qiang, ZHANG Ping, LI Yun-kai and LUO Heng declare that they have no conflict of interest.

Foundation item

Projects(51575289, 51705270) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jian, Gx., Wang, Yq., Zhang, P. et al. Analysis of lubrication performance for internal meshing gear pair considering vibration. J. Cent. South Univ. 28, 126–139 (2021). https://doi.org/10.1007/s11771-021-4591-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4591-3

Key words

关键词

Navigation