Skip to main content
Log in

A molecular dynamics study of calcium silicate hydrates-aggregate interfacial interactions and influence of moisture

水化硅酸钙-集料界面交互作用及湿度影响的分子动力学研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The interface properties between hydrated cement paste (hcp) and aggregates largely determine the various performances of concrete. In this work, molecular dynamics simulations were employed to explore the atomistic interaction mechanisms between the commonly used aggregate phase calcite/silica and calcium silicate hydrates (C-S-H), as well as the effect of moisture. The results suggest that the C-S-H/calcite interface is relatively strong and stable under both dry and moist conditions, which is caused by the high-strength interfacial connections formed between calcium ions from calcite and high-polarity non-bridging oxygen atoms from the C-S-H surface. Silica can be also adsorbed on the dry C-S-H surface by the H-bonds; however, the presence of water molecules on the interface may substantially decrease the affinities. Furthermore, the dynamics interface separation tests of C-S-H/aggregates were also implemented by molecular dynamics. The shape of the calculated stress-separation distance curves obeys the quasi-static cohesive law obtained experimentally. The moisture conditions and strain rates were found to affect the separation process of C-S-H/silica. A wetter interface and smaller loading rate may lead to a lower adhesion strength. The mechanisms interpreted here may shed new lights on the understandings of hcp/aggregate interactions at a nano-length scale and creation of high performance cementitious materials.

摘要

水泥水化浆体与集料的界面性质在很大程度上决定了混凝土的各项性能。 本研究利用分子动力学模拟探讨了常用的集料相碳酸钙/二氧化硅与水化硅酸钙(C-S-H)之间的界面相互作用机制, 以及湿度对界面性质的影响。 结果表明, 无论在干或湿条件下, C-S-H/碳酸钙界面都具有较强的稳定性。 这是由于碳酸钙中钙离子与 C-S-H 表面的高极性非桥氧原子具有高强度化学连接的原因。 二氧化硅则通过氢键作用吸附于干燥的 C-S-H 表面,但界面上水分子的存在会大大降低界面亲和度。 此外, 还利用分子动力学进行了 C-S-H/集料界面分离的动态模拟, 计算结果趋势符合准静态黏聚法则。 而润湿度和拉伸速率对 C-S-H/二氧化硅的分离过程有较为明显的影响, 较湿润的界面和较小的加载速率均有可能导致黏聚力降低。 本研究可为纳米尺度下理解浆体/集料相互作用以及高性能水泥基材料的研制提供新的思路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HAJEK P. Concrete structures for sustainability in a changing world [J]. Procedia Engineering, 2017, 171: 207–214. DOI: https://doi.org/10.1016/j.proeng.2017.01.328.

    Article  Google Scholar 

  2. ZHU Zhi-gang, CHEN Hui-su. Overestimation of ITZ thickness around regular polygon and ellipse aggregate [J]. Computers and Structures, 2017, 182: 205–218. DOI: https://doi.org/10.1016/j.compstruc.2016.11.015.

    Article  Google Scholar 

  3. FARRAN J. Introduction: The transition zone-discovery and development [R]. London: E&FN SPON, 1996.

    Google Scholar 

  4. JEBLI M, JAMIN F, MALACHANNE E, GARCIA-DIAZ E, YOUSSOUFI M S. Experimental characterization of mechanical properties of the cement-aggregate interface in concrete [J]. Construction and Building Materials, 2018, 161: 16–25. DOI: https://doi.org/10.1016/j.conbuildmat.2017.11.100.

    Article  Google Scholar 

  5. NESRINE S, MOUAD J, ETIENNE M, FRÉDÉRIC J, FRÉDÉRIC D, ANNE-SOPHIE C, ERIC G D, MOULAY SAÏD E Y. Identification of a cohesive zone model for cement paste-aggregate interface in a shear test [J]. European Journal of Environmental and Civil Engineering, 2019, online. DOI: https://doi.org/10.1080/19648189.2019.1623082.

  6. PENG Hui, CUI Chao, CAI C S, LIU Yang, LIU Zhen. Microstructure and microhardness property of the interface between a metakaolin/GGBFS-based geopolymer paste and granite aggregate [J]. Construction and Building Materials, 2019, 221: 263–273. DOI: https://doi.org/10.1016/j.conbuildmat.2019.06.090.

    Article  Google Scholar 

  7. HE Shan, LI Zhong, YANG En-hua. Quantitative characterization of anisotropic properties of the interfacial transition zone (ITZ) between microfiber and cement paste [J]. Cement and Concrete Research, 2019, 122(8): 136–146. DOI: https://doi.org/10.1016/j.cemconres.2019.05.007.

    Article  Google Scholar 

  8. SHEN Qi-zhen, PAN Gang-hua, ZHAN Hua-gang. Effect of interfacial transition zone on the carbonation of cement-based materials [J]. Journal of Materials in Civil Engineering, 2017, 29(7): 1–9. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001860.

    Article  Google Scholar 

  9. LYU Kai, SHE Wei. Determination of aggregate surface morphology at the interfacial transition zone (ITZ) [J]. Journal of Visualized Experiments: JoVE, 2019(154): 1–9. DOI: https://doi.org/10.3791/60245.

  10. de la VARGA I, MUÑOZ J F, BENTZ D P, SPRAGG R P, STUTZMAN P E, GRAYBEAL B A. Grout-concrete interface bond performance: Effect of interface moisture on the tensile bond strength and grout microstructure [J]. Construction and Building Materials, 2018, 170: 747–756. DOI: https://doi.org/10.1016/j.conbuildmat.2018.03.076.

    Article  Google Scholar 

  11. ZHOU Yang, SHE Wei, HOU Dong-shuai, YIN Bing, CHANG Hong-lei, JIANG Jin-yang, LI Jia-qi. Modification of incorporation and in-situ polymerization of aniline on the nano-structure and meso-structure of calcium silicate hydrates [J]. Construction and Building Materials, 2018, 182: 459–468. DOI: https://doi.org/10.1016/j.conbuildmat.2018.06.141.

    Article  Google Scholar 

  12. MURRAY S J, SUBRAMANI V J, SELVAM R P, HALL K D. Molecular dynamics to understand the mechanical behavior of cement paste [J]. Transportation Research Record, 2010, 2142(1): 75–82. DOI: https://doi.org/10.3141/2142-11.

    Article  Google Scholar 

  13. HAJILAR S, SHAFEI B. Mechanical failure mechanisms of hydrated products of tricalcium aluminate: A reactive molecular dynamics study [J]. Materials and Design, 2016, 90: 165–176. DOI: https://doi.org/10.1016/j.matdes.2015.10.089.

    Article  Google Scholar 

  14. CYGAN R T, LIANG Jian-jie, KALINICHEV A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field [J]. Journal of Physical Chemistry B, 2004, 108(4): 1255–1266. DOI: https://doi.org/10.1021/jp0363287.

    Article  Google Scholar 

  15. LI Zhi-hui, LIU Wen-tao, LI Zhong-yuan, DUAN Xiang-yuan, GAO Xu-jing, LI Yun-cai, YANG Ming-cheng, HE Su-qin, ZHU Cheng-shen. Swelling properties and molecular simulation of PNIPA porous hydrogels [J]. Journal of Central South University, 2013, 20(5): 1161–1172. DOI: https://doi.org/10.1007/s11771-013-1599-3.

    Article  Google Scholar 

  16. PELLENQ R J M, KUSHIMA A, SHAHSAVARI R, van VLIET K J, BUEHLER M J, YIP S, ULM F J. A realistic molecular model of cement hydrates [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(38): 16102–16107. DOI: https://doi.org/10.1073/pnas.0902180106.

    Article  Google Scholar 

  17. ALLEN A J, THOMAS J J, JENNINGS H M. Composition and density of nanoscale calcium-silicate-hydrate in cement [J]. Nature Materials, 2007, 6(4): 311–316. DOI: https://doi.org/10.1038/nmat1871.

    Article  Google Scholar 

  18. ZHOU Yang, OROZCO C A, DUQUER E, MANZANO H, GENG Guo-qing, FENG Pan, MONTEIRO P J M, MIAO Chang-wen. Modification of poly (ethylene glycol) on the microstructure and mechanical properties of calcium silicate hydrates [J]. Cement and Concrete Research, 2019, 115: 20–30. DOI:https://doi.org/10.1016/j.cemconres.2018.10.001.

    Article  Google Scholar 

  19. GENG Guo-qing, LI Jia-qi, ZHOU Yang, LIU Lin, YAN Jin-yuan, KUNZ M, MONTEIRO P J M. A high-pressure X-ray diffraction study of the crystalline phases in calcium aluminate cement paste [J]. Cement and Concrete Research, 2018, 108: 38–45. DOI: https://doi.org/10.1016/j.cemconres.2018.03.004.

    Article  Google Scholar 

  20. LIU Gui-hua, ZHANG Wen, QI Tian-gui, PENG Zhi-hong, ZHOU Qiu-sheng, LI Xiao-bin. Influence of silicate anions structure on desilication in silicate-bearing sodium aluminate solution [J]. Journal of Central South University, 2016, 23(7): 1569–1575. DOI: https://doi.org/10.1007/s11771-016-3210-1.

    Article  Google Scholar 

  21. ZHOU Yang, HOU Dong-shuai, JIANG Jin-yang, LIU Lin, SHE Wei, YU Jiao. Experimental and molecular dynamics studies on the transport and adsorption of chloride ions in the nano-pores of calcium silicate phase: The influence of calcium to silicate ratios [J]. Microporous and Mesoporous Materials, 2018, 255: 23–35. DOI: https://doi.org/10.1016/j.micromeso.2017.07.024.

    Article  Google Scholar 

  22. ZHOU Yang, HOU Dong-shuai, JIANG Jin-yang, WANG Peng-gang. Chloride ions transport and adsorption in the nano-pores of silicate calcium hydrate: Experimental and molecular dynamics studies [J]. Construction and Building Materials, 2016, 126: 991–1001. DOI: https://doi.org/10.1016/j.conbuildmat.2016.09.110.

    Article  Google Scholar 

  23. ZHOU Yang, TANG Lu-ping, LIU Jia-ping, MIAO Chang-wen. Interaction mechanisms between organic and inorganic phases in calcium silicate hydrates/poly(vinyl alcohol) composites [J]. Cement and Concrete Research, 2019, 125: 105891. DOI: https://doi.org/10.1016/j.cemconres.2019.105891.

    Article  Google Scholar 

  24. ZHOU Yang, HOU Dong-shuai, JIANG Jin-yang, SHE Wei, LI Jia-qi. Molecular dynamics study of solvated aniline and ethylene glycol monomers confined in calcium silicate nanochannels: A case study of tobermorite [J]. Physical Chemistry Chemical Physics, 2017, 19(23): 15145–15159. DOI: https://doi.org/10.1039/c7cp02928d.

    Article  Google Scholar 

  25. ZHOU Yang, HOU Dong-shuai, GENG Guo-qing, FENG Pan, YU Jiao, JIANG Jin-yang. Insights into the interfacial strengthening mechanisms of calcium-silicate-hydrate/polymer nanocomposites [J]. Physical Chemistry Chemical Physics, 2018, 20(12): 8247–8266. DOI: https://doi.org/10.1039/c8cp00328a.

    Article  Google Scholar 

  26. WANG Hao, LIN En-qiang, XU Guang-ji. Molecular dynamics simulation of asphalt-aggregate interface adhesion strength with moisture effect [J]. International Journal of Pavement Engineering, 2017, 18(5): 414–423. DOI: https://doi.org/10.1080/10298436.2015.1095297.

    Article  Google Scholar 

  27. XU Guang-ji, WANG Hao. Molecular dynamics study of interfacial mechanical behavior between asphalt binder and mineral aggregate [J]. Construction and Building Materials, 2016, 121: 246–254. DOI: https://doi.org/10.1016/j.conbuildmat.2016.05.167.

    Article  Google Scholar 

  28. GUO Qing-lin, LI Guang-yao, GAO Ying, WANG Ke-yi, DONG Zi-zhen, LIU Fu-chun, ZHU Han. Experimental investigation on bonding property of asphalt-aggregate interface under the actions of salt immersion and freeze-thaw cycles [J]. Construction and Building Materials, 2019, 206: 590–599. DOI: https://doi.org/10.1016/j.conbuildmat.2019.02.094.

    Article  Google Scholar 

  29. ZHOU Yang, HOU Dong-shuai, MANZANO H, OROZCO C A, GENG Guo-qing, MONTEIRO P J M, LIU Jia-ping. Interfacial connection mechanisms in calcium-silicate-hydrates/polymer nanocomposites: A molecular dynamics study [J]. ACS Applied Materials and Interfaces, 2017, 9(46): 41014–41025. DOI: https://doi.org/10.1021/acsami.7b12795.

    Article  Google Scholar 

  30. PICKER A, NICOLEAU L, NONAT A, LABBEZ C, COLFEN H. Identification of binding peptides on calcium silicate hydrate: A novel view on cement additives [J]. Advanced Materials, 2014, 26(7): 1135–1140. DOI: https://doi.org/10.1002/adma.201303345.

    Article  Google Scholar 

  31. GENG Guo-qing, MYERS R J, QOMI M J A, MONTEIRO P J M. Densification of the interlayer spacing governs the nanomechanical properties of calcium-silicate-hydrate [J]. Scientific Reports, 2017, 7(1): 10986. DOI: https://doi.org/10.1038/s41598-017-11146-8.

    Article  Google Scholar 

  32. RICHARDSON I G. The calcium silicate hydrates [J]. Cement and Concrete Research, 2008, 38(2): 137–158. DOI: https://doi.org/10.1016/j.cemconres.2007.11.005.

    Article  Google Scholar 

  33. CONG X D, KIRKPATRICK R J, DIAMOND S. 29SI MAS NMR spectroscopic investigation of alkali-silica reaction product gels [J]. Cement and Concrete Research, 1993, 23(4): 811–823.

    Article  Google Scholar 

  34. KALINICHEV A G, KIRKPATRICK R J. Molecular dynamics modeling of chloride binding to the surfaces of calcium hydroxide, hydrated calcium aluminate, and calcium silicate phases [J]. Chemistry of Materials, 2002, 14(8): 3539–3549. DOI: https://doi.org/10.1021/cm0107070.

    Article  Google Scholar 

  35. DING Qing-jun, YANG Jun, HOU Dong-shuai, ZHANG Gao-zhan. Insight on the mechanism of sulfate attacking on the cement paste with granulated blast furnace slag: An experimental and molecular dynamics study [J]. Construction and Building Materials, 2018, 169: 601–611. DOI: https://doi.org/10.1016/j.conbuildmat.2018.02.148.

    Article  Google Scholar 

  36. ZHOU Yang, CAI Jing-shun, HOU Dong-shuai, CHANG Hong-lei, YU Jiao. The inhibiting effect and mechanisms of smart polymers on the transport of fluids throughout nanochannels [J]. Applied Surface Science, 2020, 500: 144019. DOI: https://doi.org/10.1016/j.apsusc.2019.144019.

    Article  Google Scholar 

  37. WANG Jian-wei, KALINICHEV A G, KIRKPATRICK R J. Molecular modeling of water structure in nano-pores between brucite (001) surfaces [J]. Geochimica et Cosmochimica Acta, 2004, 68(16): 3351–3365. DOI: https://doi.org/10.1016/j.gca.2004.02.016.

    Article  Google Scholar 

  38. WANG Jian-wei, KALINICHEV A G, KIRKPATRICK R J. Effects of substrate structure and composition on the structure, dynamics, and energetics of water at mineral surfaces: A molecular dynamics modeling study [J]. Geochimica et Cosmochimica Acta, 2006, 70(3): 562–582. DOI: https://doi.org/10.1016/j.gca.2005.10.006.

    Article  Google Scholar 

  39. MARTIN M, ESPINOSA J F, ASENSIO J L, JIMÉNEZ J. A comparison of the geometry and of the energy results obtained by application of different molecular mechanics force fields to methyl α-lactoside and the c-analogue of lactose [J]. Carbohydrate Research, 1997, 298(1, 2): 15–49. DOI: https://doi.org/10.1016/S0008-6215(96)00225-X.

    Article  Google Scholar 

  40. ASENSIO J L, MARTIN M, JIMENEZ J. The use of CVFF and CFF91 force fields in conformational analysis of carbohydrate molecules. comparison with AMBER molecular mechanics and dynamics calculations for methyl α-lactoside [J]. International Journal of Biological Macromolecules, 1995, 17(3, 4): 137–148. DOI: https://doi.org/10.1016/0141-8130(95)92680-O.

    Article  Google Scholar 

  41. SANCHEZ F, ZHANG L. Interaction energies, structure, and dynamics at functionalized graphitic structure-liquid phase interfaces in an aqueous calcium sulfate solution by molecular dynamics simulation [J]. Carbon, 2010, 48(4): 1210–1223. DOI: https://doi.org/10.1016/j.carbon.2009.11.044.

    Article  Google Scholar 

  42. XU Guang-ji, WANG Hao. Study of cohesion and adhesion properties of asphalt concrete with molecular dynamics simulation [J]. Computational Materials Science, 2016, 112: 161–169. DOI: https://doi.org/10.1016/j.commatsci.2015.10.024.

    Article  Google Scholar 

  43. SRDJAN K, JELENA B V, PAUL G T, GIJSBERTUS D W, COR E K. Estimating the polymer-metal work of adhesion from molecular dynamics simulations [J]. Chemistry of Materials, 2007, 19(4): 903–907. DOI: https://doi.org/10.1021/cm0621702.

    Article  Google Scholar 

  44. SHI Jia-jun, PAN Yun-feng, LI He-dong, FU Jun. Effects of water immersion on the adhesion between adhesive layer and concrete block [J]. Advances in Civil Engineering, 2019, 2019: 16–18. DOI: https://doi.org/10.1155/2019/7069757.

    Article  Google Scholar 

  45. BEUSHAUSEN Hans, HÖHLIG BjöRN, TALOTTI Marco. The influence of substrate moisture preparation on bond strength of concrete overlays and the microstructure of the OTZ [J]. Cement and Concrete Research, 2017, 92: 84–91. DOI: https://doi.org/10.1016/j.cemconres.2016.11.017.

    Article  Google Scholar 

  46. JEBLI M, JAMIN F, PELISSOU C, MALACHANNE E, GARCIA-DIAZ E, EL YOUSSOUFI M S. Leaching effect on mechanical properties of cement-aggregate interface [J]. Cement and Concrete Composites, 2018, 87: 10–19. DOI: https://doi.org/10.1016/j.cemconcomp.2017.11.018.

    Article  Google Scholar 

  47. DONG Ze-jiao, LIU Zhi-yang, WANG Peng, GONG Xiang-bing. Nanostructure characterization of asphaltaggregate interface through molecular dynamics simulation and atomic force microscopy [J]. Fuel, 2017, 189: 155–163. DOI: https://doi.org/10.1016/j.fuel.2016.10.077.

    Article  Google Scholar 

  48. ZHAO Hai-tao, JIANG Kai-di, YANG Rui, TANG Yi-min, LIU Jia-ping. Experimental and theoretical analysis on coupled effect of hydration, temperature and humidity in early-age cement-based materials [J]. International Journal of Heat and Mass Transfer, 2020, 146: 118784. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.118784.

    Article  Google Scholar 

  49. ZHAO Hai-tao, WU Xia, HUANG Yu-yu, ZHANG Peng, TIAN Qian, LIU Jia-ping. Investigation of moisture transport in cement-based materials using low-field nuclear magnetic resonance imaging [J]. Magazine of Concrete Research, 2021, online. DOI: https://doi.org/10.1680/jmacr.19.00211.

  50. SANCHEZ F, ZHANG L. Molecular dynamics modeling of the interface between surface functionalized graphitic structures and calcium-silicate-hydrate: Interaction energies, structure, and dynamics [J]. Journal of Colloid and Interface Science, 2008, 323(2): 349–358. DOI: https://doi.org/10.1016/j.jcis.2008.04.023.

    Article  Google Scholar 

  51. THOMAS R J, SORENSEN A D. Review of strain rate effects for UHPC in tension [J]. Construction and Building Materials, 2017, 153: 846–856. DOI: https://doi.org/10.1016/j.conbuildmat.2017.07.168.

    Article  Google Scholar 

  52. WU Sheng-xing, CHEN Xu-dong, ZHOU Ji-kai. Influence of strain rate and water content on mechanical behavior of dam concrete [J]. Construction and Building Materials, 2012, 36: 448–457. DOI: https://doi.org/10.1016/j.conbuildmat.2012.06.046.

    Article  Google Scholar 

  53. WU Sheng-xing, CHEN Xu-dong, ZHOU Ji-kai. Tensile strength of concrete under static and intermediate strain rates: Correlated results from different testing methods [J]. Nuclear Engineering and Design, 2012, 250: 173–183. DOI: https://doi.org/10.1016/j.nucengdes.2012.05.004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by ZHOU Yang, PENG Ze-chuan, HUANG Jia-le, MA Tao, HUANG Xiao-ming and MIAO Chang-wen. ZHOU Yang, MA Tao, HUANG Xiao-ming and MIAO Chang-wen contributed to the conception of the study. PENG Ze-chuan and HUANG Jia-le designed and performed the simulations. ZHOU Yang and HUANG Jia-le performed the data analysis and wrote the manuscript. ZHOU Yang and HUANG Jia-le replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Jia-le Huang  (黄家乐).

Additional information

Conflict of interest

ZHOU Yang, PENG Ze-chuan, HUANG Jia-le, MA Tao, HUANG Xiao-ming and MIAO Chang-wen declare that they have no conflict of interest.

Foundation item

Projects(6512009004A, 51908119, U1706222) supported by the National Natural Science Foundation of China; Project(BK20190367) supported by the Natural Science Foundation of Jiangsu Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Peng, Zc., Huang, Jl. et al. A molecular dynamics study of calcium silicate hydrates-aggregate interfacial interactions and influence of moisture. J. Cent. South Univ. 28, 16–28 (2021). https://doi.org/10.1007/s11771-021-4582-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4582-4

Key words

关键词

Navigation