Skip to main content
Log in

Evolution of deformation property and strength component mobilization for thermally treated Beishan granite under compression

热处理后北山花岗岩在压缩过程的变形及强度调用演化

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The cohesion weakening and friction strengthening (CWFS) model for rock reveals the strength components mobilization process during progressive brittle failure process of rock, which is very helpful in understanding mechanical properties of rock. However, the used incremental cyclic loading-unloading compression test for the determination of strength components is very complicated, which limits the application of CWFS model. In this paper, incremental cyclic loading-unloading compression test was firstly carried out to study the evolution of deformation and the strength properties of Beishan granite after various temperatures treated under different confining pressures. We found the axial and lateral unloading modulus are closely related to the applied stress and damage state of rock. Based on these findings, we can accurately determine the plastic strain during the entire failure process using conventional tri-axial compression test data. Furthermore, a strength component (cohesive and frictional strength) determination method was developed using conventional triaxial compression test. Using this method, we analyzed the variation of strength mobilization and deformation properties of Beishan granite after various temperatures treated. At last, a non-simultaneous strength mobilization model for thermally treated granite was obtained and verified by numerical simulation, which demonstrated the effectiveness of the proposed strength determination method.

摘要

岩石压缩破坏过程的黏聚力强度劣化-摩擦强度调用模型(CWFS)可揭示脆性岩石压缩破坏过程 中2 种强度组分调用过程, 从内在机制上反映了岩石压缩破坏全过程中由于微裂隙产生而导致的粘聚 力强度劣化和摩擦强度的强化的过程。然而, 确定压缩过程粘聚力强度和内摩擦强度需要开展复杂的 三轴循环加卸载, 限制了该模型的广泛应用。本文以北山花岗岩为研究对象, 首先开展了多个围压条 件下(5, 10, 20, 30 MPa)三轴循环加卸载试验和常规三轴试验, 研究不同温度处理后(100, 300, 500, 600, 800 °C)北山花岗岩的变形和强度性质。结果表明岩石的轴向和切向加卸载割线模量与加载应力 密切相关, 并建立卸载割线模量与加载应力的关系, 该关系可用以准确确定岩石常规三轴压缩过程各 应力水平的塑性应变。在此基础上, 提出了通过常规三轴压缩试验数据确定压缩破坏全过程强度组分 调用的方法。应用此方法分析了不同温度处理后花岗岩变形和强度参数调用过程。最后建立了热处理 后花岗岩强度调用模型, 并通过数值模拟验证了该模型的合理性, 同时证实了所提出的基于常规三轴 压缩试验确定岩石压缩过程强度参数调用方法的合理性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. DU Kun, SU Rui, TAO Ming, YANG Cheng-zhi, ALIAKBAR M, WANG Shao-feng. Specimen shape and cross-section effects on the mechanical properties of rocks under uniaxial compressive stress [J]. Bulletin of Engineering Geology and the Environment, 2019, 78(8): 6061–6074. DOI: https://doi.org/10.1007/s10064-019-01518-x.

    Article  Google Scholar 

  2. RAFIEI R H, MARTIN C D. Cohesion degradation and friction mobilization in brittle failure of rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 106: 1–13. DOI: https://doi.org/10.1016/j.ijrmms.2018.04.003.

    Article  Google Scholar 

  3. CUI Lan, ZHENG Jun-jie, ZHANG Rong-jun, DONG You-kou. Elasto-plastic analysis of a circular opening in rock mass with confining stress-dependent strain-softening behaviour [J]. Tunnelling and Underground Space Technology, 2015, 50: 94–108. DOI: https://doi.org/10.1016/j.tust.2015.07.001.

    Article  Google Scholar 

  4. SONG Li, LI Hang-zhou, CHAN C L, LOW B K. Reliability analysis of underground excavation in elastic-strain-softening rock mass [J]. Tunnelling and Underground Space Technology, 2016, 60: 66–79. DOI: https://doi.org/10.1016/j.tust.2016.06.015.

    Article  Google Scholar 

  5. WANG Feng-yun, QIAN De-ling. Difference solution for a circular tunnel excavated in strain-softening rock mass considering decayed confinement [J]. Tunnelling and Underground Space Technology, 2018, 82: 66–81. DOI: https://doi.org/10.1016/j.tust.2018.08.001.

    Article  Google Scholar 

  6. MISHRA B, NIE Da-chao. Experimental investigation of the effect of change in control modes on the post-failure behavior of coal and coal measures rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60: 363–369. DOI: https://doi.org/10.1016/j.ijrmms.2013.01.016.

    Article  Google Scholar 

  7. PININSKA J, LUKASZEWSKI P. The relationships between post-failure state and compression strength of sudetic fractured rocks [J]. Bulletin of the International Association of Engineering Geology, 1991, 43(1): 81–86. DOI: https://doi.org/10.1007/bf02590174.

    Article  Google Scholar 

  8. POURHOSSEINI O, SHABANIMASHCOOL M. Development of an elasto-plastic constitutive model for intact rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 66: 1–12. DOI: https://doi.org/10.1016/j.ijrmms.2013.11.010.

    Article  Google Scholar 

  9. TUTLUOĞLU L, ÖGEİ F, KARPUZ C. Relationship between pre-failure and post-failure mechanical properties of rock material of different origin [J]. Rock Mechanics and Rock Engineering, 2014, 48(1): 121–141. DOI: https://doi.org/10.1007/s00603-014-0549-1.

    Article  Google Scholar 

  10. XU Xiao-li, KARAKUS M, GAO Feng, ZHANG Zhi-zhen. Thermal damage constitutive model for rock considering damage threshold and residual strength [J]. Journal of Central South University, 2018, 25(10): 2523–2536. DOI: https://doi.org/10.1007/s11771-018-3933-2.

    Article  Google Scholar 

  11. HAN Jian-xin, LI Shu-cai, LI Shu-chen, YANG Wei-min. A procedure of strain-softening model for elasto-plastic analysis of a circular opening considering elasto-plastic coupling [J]. Tunnelling and Underground Space Technology, 2013, 37: 128–134. DOI: https://doi.org/10.1016/j.tust.2013.04.001.

    Article  Google Scholar 

  12. UNTEREGGER D, FUCHS B, HOFSTETTER G. A damage plasticity model for different types of intact rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 80: 402–411. DOI: https://doi.org/10.1016/j.ijrmms.2015.09.012.

    Article  Google Scholar 

  13. DAI Bing, ZHAO Guo-yan, KONIETZKY H, WASANTHA P L P. Experimental investigation on damage evolution behaviour of a granitic rock under loading and unloading [J]. Journal of Central South University, 2018, 25(5): 1213–1225. DOI: https://doi.org/10.1007/s11771-018-3819-3.

    Article  Google Scholar 

  14. YIN Tu-bing, WANG Pin, LI Xi-bing, SHU Rong-hua, YE Zhou-yuan. Effects of thermal treatment on physical and mechanical characteristics of coal rock [J]. Journal of Central South University, 2016, 23(9): 2336–2345. DOI: https://doi.org/10.1007/s11771-016-3292-9.

    Article  Google Scholar 

  15. CHEN Shi-wan, YANG Chun-he, WANG Gui-bin. Evolution of thermal damage and permeability of Beishan granite [J]. Applied Thermal Engineering, 2017, 110: 1533–1542. DOI: https://doi.org/10.1016/j.applthermaleng.2016.09.075.

    Article  Google Scholar 

  16. CHEN L, WANG C P, LIU J F, LI Y, LIU J, WANG J. Effects of temperature and stress on the time-dependent behavior of Beishan granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 93: 316–323. DOI: https://doi.org/10.1016/j.ijrmms.2016.11.007.

    Article  Google Scholar 

  17. MARTIN C D. The strength of massive lac du bonnet granite around underground openings [D]. Manitoba, Canada: University of Manitoba, 1993.

    Google Scholar 

  18. HAJIABDOLMAJID V. Mobilization of strength in brittle failure of rock [D]. Kingston, Ontarno, Canada: Queen’s University, 2001.

    Google Scholar 

  19. LI Peng-fei, ZHAO Xing-guang, GUO Zheng, MA Li-ke, CHEN Liang, WANG Ju. Variation of strength parameters of Beishan granite under triaxial compression [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(7): 1599–1611. DOI: 1000-6915(2017)07-1599-12. (in Chinese)

    Google Scholar 

  20. ARZÚA J, ALEJANO L R. Dilation in granite during servo-controlled triaxial strength tests [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 61: 43–56. DOI: https://doi.org/10.1016/j.ijrmms.2013.02.007.

    Article  Google Scholar 

  21. ZHAO Xing-guang, LI Peng-fei, MA Li-ke. Damage and dilation characteristics of deep granite at Beishan under cyclic loading unloading conditions [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9): 1740–1748. DOI: https://doi.org/10.13722/j.cnki.jrme.2014.09.002. (in Chinese)

    Google Scholar 

  22. CHEN Shi-wan. Research on thermal and mechanical damage of granite for geological disposal of high level radioactive waste [D]. Chongqing, China: Chongqing University, 2018. (in Chinese)

    Google Scholar 

  23. ISRM International Society for Rock Mechanics and Rock Engineering. Suggested methods for determining the strength of rock materials in triaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15: 47–51. DOI: https://doi.org/10.1016/0148-9062(78)91677-7.

    Article  Google Scholar 

  24. CHEN Shi-wan, WANG Gui-bin, ZUO Shuang-ying, YANG Chun-he. Experimental investigation on microstructure and permeability of thermally treated beishan granite [J]. Journal of Testing and Evaluation, 2021, 49(2). DOI: https://doi.org/10.1520/jte20180879.

  25. WANG Hong-cai, ZHAO Wei-hua, SUN Dong-sheng, GUO Bin-bin. Mohr-coulomb yield criterion [J]. Rock Plastic Mechanics Chinese Journal of Geophysics, 2012, 55(6): 733–741. DOI: https://doi.org/10.1002/cjg2.1767. (in Chinese)

    Article  Google Scholar 

  26. YAO Zai-xing. A method for measuring strength parameters of softening Drucker-Prager material [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6): 1187–119. DOI: https://doi.org/10.3969/j.issn.1000-6915.2014.06.011. (in Chinese)

    Google Scholar 

  27. LU Yin-long, WANG Lian-guo, YANG Feng, LI Yu-jie, CHEN Hai-min. Post-peak strain softening mechanical properties of weak rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 640–648. DOI: 1000-6915(2010)03-0640-09. (in Chinese)

    Google Scholar 

  28. SUN Qiang, ZHANG Zhi-zhen, XUE Lei, ZHU Shu-yun. physico-mechanical properties variation of rock with phase transformation under high temperature [J]. Chinese Journal of Rock Mechanics & Engineering, 2013, 32(5): 935–942. DOI: 1000-6915(2013)05-0935-08. (in Chinese)

    Google Scholar 

  29. PLEVOVA E, VACULIKOVA L, KOZUSNIKOVA A, RITZ M, MARTYNKOVA G S. Thermal expansion behaviour of granites [J]. Journal of Thermal Analysis and Calorimetry, 2015, 123(2): 1555–1561. DOI: https://doi.org/10.1007/s10973-015-4996-z.

    Article  Google Scholar 

  30. GAO Yao-hui, FENG Xia-ting, WANG Zhao-feng, ZHANG Xi-wei. Strength and failure characteristics of jointed marble under true triaxial compression [J]. Bulletin of Engineering Geology and the Environment, 2019, 79(2): 891–905. DOI: https://doi.org/10.1007/s10064-019-01610-2.

    Article  Google Scholar 

  31. SHANG Jun-long. Rupture of veined granite in polyaxial compression: Insights from three-dimensional discrete element method modeling [J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2): 1–25. DOI: https://doi.org/10.1029/2019jb019052.

    Google Scholar 

  32. ZHANG Kun-yong, CHARKLEY F N. An anisotropic constitutive model of geomaterials based on true triaxial testing and its application [J]. Journal of Central South University, 2017, 24(6): 1430–1442. DOI: https://doi.org/10.1007/s11771-017-3547-0.

    Article  Google Scholar 

  33. ZHANG She-rong, SUN Bo, WANG Chao, YAN Lei. Influence of intermediate principal stress on failure mechanism of hard rock with a pre-existing circular opening [J]. Journal of Central South University, 2014, 21(4): 1571–1582. DOI: https://doi.org/10.1007/s11771-014-2098-x.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

CHEN Shi-wan provided the concept, conducted experimental work and edited the draft of manuscript. LIANG Feng, ZUO Shuang-ying and WU Dao-yong edited the draft of manuscript, replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Shi-wan Chen  (陈世万).

Additional information

Conflict of interest

CHEN Shi-wan, LIANG Feng, ZUO Shuangying and WU Dao-yong declare that they have no conflict of interest.

Foundation item

Project(41902301) supported by the National Natural Science Foundation of China; Project(20201Y185) supported by the Science and Technology Foundation of Guizhou Province, China; Project(Z018023) supported by the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering, IRSM, CAS; Project (201822) supported by the Foundation for Young Talents of Guizhou University, China; Project(2017-5402) supported by the Mountain Geohazard Prevention R&D Center of Guizhou Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Sw., Liang, F., Zuo, Sy. et al. Evolution of deformation property and strength component mobilization for thermally treated Beishan granite under compression. J. Cent. South Univ. 28, 219–234 (2021). https://doi.org/10.1007/s11771-021-4598-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4598-9

Key words

关键词

Navigation