Skip to main content
Log in

The Effects of Electromagnetic Fields on Human Health: Recent Advances and Future

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The potential of electromagnetic fields (EMFs) for disease treatment and health enhancement has been actively pursued over the recent decades. This review first provides a general introduction about natural EMFs and related biological effects. Then the recent progress on the EMF treatment of some common diseases (such as cancer, diabetes, wound healing and neurological diseases, etc.) has been carefully reviewed and summarized. Yet, the blindness on the selection of therapeutic EMF parameters still hinders the broad application of EMF therapy. Moreover, the unclear mechanism of EMF function and poor reproducibility of experimental results also remain big challenges in the field of bioelectromagnetics. Bionics is a useful methodology that gains inspiration from nature to serve human life and industry. We have discussed the feasibility of applying bionic approach on the selection of therapeutic EMFs, which is based on the findings of natural EMFs. Finally, we advocate that the detailed information of EMFs and biological samples should be thoroughly recorded in future research and reported in publications. In addition, the publication of studies with negative results should also be allowed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wertheimer N, Leeper E. Electrical wiring configurations and childhood cancer. American Journal of Epidemiology, 1979, 109, 273–284.

    Article  Google Scholar 

  2. Marino C, Galloni P, Merla C. Biological effects of electromagnetic fields. Reference Module in Materials Science and Materials Engineering, 2016, 1–9.

  3. Krylov V V. Biological effects related to geomagnetic activity and possible mechanisms. Bioelectromagnetics, 2017, 38, 497–510.

    Article  Google Scholar 

  4. Cherry N. Schumann resonances, a plausible biophysical mechanism for the human health effects of solar. Natural Hazards, 2002, 26, 279–331.

    Article  Google Scholar 

  5. Thomson H. Wave therapy. Nature, 2018, 555, 20–22.

    Article  Google Scholar 

  6. Chen B B, Lv J, Wang X Y, Qian R C. Probing the membrane vibration of single living cells by using nanopipettes. Chembiochem, 2019, 21, 650–655.

    Article  Google Scholar 

  7. Tang J Y, Yeh T W, Huang Y T, Wang M H, Jang L S. Effects of extremely low-frequency electromagnetic fields on B16F10 cancer cells. Electromagnetic Biology and Medicine, 2019, 38, 149–157.

    Article  Google Scholar 

  8. Elhalel G, Price C, Fixler D, Shainberg A. Cardioprotection from stress conditions by weak magnetic fields in the Schumann Resonance band. Scientific Reports, 2019, 9, 1645.

    Article  Google Scholar 

  9. Thébault E, Finlay C C, Beggan C D, Alken P, Aubert J, Barrois O, Bertrand F, Bondar T, Boness A, Brocco L. International geomagnetic reference field: The 12th generation. Earth, Planets and Space, 2015, 67, 79.

    Article  Google Scholar 

  10. Qin S Y, Yin H, Yang C L, Dou Y F, Liu Z M, Zhang P, Yu H, Huang Y L, Feng J, Hao J F, Hao J, Deng L Z, Yan X Y, Dong X L, Zhao Z X, Jiang T J, Wang H W, Luo S J, Xie C. A magnetic protein biocompass. Nature Materials, 2016, 15, 217–226.

    Article  Google Scholar 

  11. Zhan S, Merlin C, Boore J L, Reppert S M. The monarch butterfly genome yields insights into long-distance migration. Cell, 2011, 147, 1171–1185.

    Article  Google Scholar 

  12. Ritz T, Thalau P, Phillips J B, Wiltschko R, Wiltschko W. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature, 2004, 429, 177–180.

    Article  Google Scholar 

  13. Boles L C, Lohmann K J. True navigation and magnetic maps in spiny lobsters. Nature, 2003, 421, 60–63.

    Article  Google Scholar 

  14. Nemec P, Altmann J, Marhold S, Burda H, Oelschlager H H A. Neuroanatomy of magnetoreception: The superior colliculus involved in magnetic orientation in a mammal. Science, 2001, 294, 366–368.

    Article  Google Scholar 

  15. Pavlova G A, Glantz R M, Dennis Willows A O. Responses to magnetic stimuli recorded in peripheral nerves in the marine nudibranch mollusk Tritonia diomedea. Journal of Comparative Physiology A, 2011, 197, 979.

    Article  Google Scholar 

  16. Burda H, Begall S, Červený J, Neef J, Němec P. Extremely low-frequency electromagnetic fields disrupt magnetic alignment of ruminants. PNAS, 2009, 106, 5708–5713.

    Article  Google Scholar 

  17. Wang Y N, Pan Y X, Parsons S, Walker M, Zhang S Y. Bats respond to polarity of a magnetic field. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2901–2905.

    Article  Google Scholar 

  18. Kimchi T, Terkel J. Magnetic compass orientation in the blind mole rat Spalax ehrenbergi. Journal of Experimental Biology, 2001, 204, 751–758.

    Article  Google Scholar 

  19. Marhold S, Wiltschko W, Burda H. A magnetic polarity compass for direction finding in a subterranean mammal. Naturwissenschaften, 1997, 84, 421–423.

    Article  Google Scholar 

  20. Jacobs J A, Kato Y, Matsushita S, Troitskaya V A. Classification of geomagnetic micropulsations. Journal of Geophysical Research, 1964, 69, 180–181.

    Article  Google Scholar 

  21. Cowling T G. Solar-terrestrial physics. Physics Bulletin, 1972, 35, 552.

    Google Scholar 

  22. Cherry N. Schumann resonance and sunspot relations to human health effects in Thailand. Natural Hazards, 2003, 29, 1–11.

    Article  Google Scholar 

  23. Schumann W O. Über die strahlungslosen Eigenschwingungen einer leitenden Kugel, die von einer Luftschicht und einer Ionosphärenhülle umgeben ist. Z Naturforsch, 1952, 7, 149–154.

    Article  MATH  Google Scholar 

  24. Besser B P. Synopsis of the historical development of Schumann resonances. Radio Science, 2007, 42, RS2S02.

    Article  Google Scholar 

  25. Sentman D D. Handbook of Atmospheric Electrodynamics, CRC Press, Boca Raton, USA, 1995.

    Google Scholar 

  26. Fdez-Arroyabe P, Fornieles-Callejón J, Santurtún A, Szangolies L, Donner R V. Schumann resonance and cardiovascular hospital admission in the area of Granada, Spain: An event coincidence analysis approach. Science of the Total Environment, 2020, 705, 135813.

    Article  Google Scholar 

  27. Rusov V D, Lukin K A, Zelentsova T N, Linnik E P, Beglaryan M E, Smolyar V P, Filippov M, Vachev B. Can resonant oscillations of the earth ionosphere influence the human brain biorhythm? [2012-08-23], https://beta.arxiv.org/abs/1208.4970.

  28. Mitsutake G, Otsuka K, Hayakawa M, Sekiguchi M, Cornelissen G, Halberg F. Does schumann resonance affect our blood pressure? Biomedicine & Pharmacotherapy, 2005, 59, S10–S14.

    Article  Google Scholar 

  29. Kozlowski M, Marciak-Kozlowska J. Schumann resonance and brain waves: A quantum description. Neuro Quantology, 2015, 13, 196–204.

    Google Scholar 

  30. Hämäläinen M, Hari R, Ilmoniemi R J, Knuutila J, Lounasmaa O V. Magnetoencephalography — Theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics, 1993, 65, 413–497.

    Article  Google Scholar 

  31. Cantero M d R, Perez P L, Smoler M, Etchegoyen C V, Cantiello H F. Electrical oscillations in two-dimensional microtubular structures. Scientific Reports, 2016, 6, 27143.

    Article  Google Scholar 

  32. Jelinek F, Cifra M, Pokorny J, Vanis J, Simsa J, Hasek J, Frydlova I. Measurement of electrical oscillations and mechanical vibrations of yeast cells membrane around 1 kHz. Electromagnetic Biology and Medicine, 2009, 28, 223–232.

    Article  Google Scholar 

  33. Berger H. Über das Elektrenkephalogramm des Menschen. European Archives of Psychiatry and Clinical Neuroscience, 1929, 87, 527–570.

    Google Scholar 

  34. Schmitt H J. History of electroencephalography. IEEE History of Telecommunications Conference, Paris, France, 2008, 78–81.

  35. Proudfoot M, Woolrich M W, Nobre A C, Turner M R. Magnetoencephalography. Practical Neurology, 2014, 14, 336–343.

    Article  Google Scholar 

  36. Fink A, Benedek M. EEG alpha power and creative ideation. Neuroscience & Biobehavioral Reviews, 2014, 44, 111–123.

    Article  Google Scholar 

  37. Dietrich A, Kanso R. A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 2010, 136, 822–848.

    Article  Google Scholar 

  38. Feinberg I, Baker T, Leder R, March J D. Response of delta (0–3 Hz) EEG and eye movement density to a night with 100 minutes of sleep. Sleep, 1988, 11, 473–487.

    Google Scholar 

  39. Pilon M, Zadra A, Joncas S, Montplaisir J. Hypersynchronous delta waves and somnambulism: Brain topography and effect of sleep deprivation. Sleep, 2006, 29, 77–84.

    Article  Google Scholar 

  40. Tatum W O, Ellen R. Grass lecture: Extraordinary EEG. The Neurodiagnostic Journal, 2014, 54, 3–21.

    Google Scholar 

  41. Huston R L. A review of electromagnetic activity in cellular mechanics. Advances in Bioscience and Biotechnology, 2016, 7, 360–371.

    Article  Google Scholar 

  42. Zhao Y, Zhan Q M. Electric fields generated by synchronized oscillations of microtubules, centrosomes and chromosomes regulate the dynamics of mitosis and meiosis. Theoretical Biology and Medical Modelling, 2012, 9, 26.

    Article  Google Scholar 

  43. Pokorný J. Electrodynamic activity of healthy and cancer cells. Journal of Physics: Conference Series, 2011, 329, 012007.

    Google Scholar 

  44. Cifra M, Pokorny J, Havelka D, Kucera O. Electric field generated by axial longitudinal vibration modes of micro-tubule. Biosystems, 2010, 100, 122–131.

    Article  Google Scholar 

  45. Pokorny J, Hasek J, Jelinek F. Electromagnetic field of microtubules: Effects on transfer of mass particles and electrons. Journal of Biological Physics, 2005, 31, 501–514.

    Article  Google Scholar 

  46. Singer S J, Nicolson G L. The fluid mosaic model of the structure of cell membranes. Science, 1972, 175, 720–731.

    Article  Google Scholar 

  47. Salbreux G, Joanny J F, Prost J, Pullarkat P. Shape oscillations of non-adhering fibroblast cells. Physical Biology, 2007, 4, 268–284.

    Article  Google Scholar 

  48. Chen C H, Tsai F C, Wang C C, Lee C H. Three-dimensional characterization of active membrane waves on living cells. Physical Review Letters, 2009, 103, 238101.

    Article  Google Scholar 

  49. Liu X L, Liu Z M, Liu Z N, Zhang S J, Bechkoum K, Clark M, Ren L Q. The effects of bio-inspired electromagnetic fields on normal and cancer cells. Journal of Bionic Engineering, 2019, 16, 943–953.

    Article  Google Scholar 

  50. Montagnier L, Aïssa J, Ferris S, Montagnier J L, Lavalléee C. Electromagnetic signals are produced by aqueous nano-structures derived from bacterial DNA sequences. Interdisciplinary Sciences: Computational Life Sciences, 2009, 1, 81–90.

    Google Scholar 

  51. Zhao Y, Zhan Q M. Electric oscillation and coupling of chromatin regulate chromosome packaging and transcription in eukaryotic cells. Theoretical Biology and Medical Modelling, 2012, 9, 27.

    Article  Google Scholar 

  52. Costa F P, de Oliveira A C, Meirelles R, Machado M C C, Zanesco T, Surjan R, Chammas M C, de Souza Rocha M, Morgan D, Cantor A, Zimmerman J, Brezovich I, Kuster N, Barbault A, Pasche B. Treatment of advanced hepatocellular carcinoma with very low levels of amplitude-modulated electromagnetic fields. British Journal of Cancer, 2011, 105, 640–648.

    Article  Google Scholar 

  53. Crocetti S, Beyer C, Schade G, Egli M, Fröhlich J, Franco-Obregön A. Low intensity and frequency pulsed electromagnetic fields selectively impair breast cancer cell viability. PLOS ONE, 2013, 8, e72944.

    Article  Google Scholar 

  54. Cameron I L, Markov M S, Hardman W E. Optimization of a therapeutic electromagnetic field (EMF) to retard breast cancer tumor growth and vascularity. Cancer Cell International, 2014, 14, 125.

    Article  Google Scholar 

  55. Ghadirian R, Madjid Ansari A, Farahmand L, Sanati H, Mesbah Moosavi Z S. A proteomics approach in evaluating extremely low frequency electromagnetic field-induced apoptosis in breast cancer cells. European Journal of Cancer, 2018, 92, S135.

    Article  Google Scholar 

  56. Yadamani S, Neamati A, Homayouni-Tabrizi M, Beyramabadi S A, Yadamani S, Gharib A, Morsali A, Khashi M. Treatment of the breast cancer by using low frequency electromagnetic fields and Mn(II) complex of a Schiff base derived from the pyridoxal. The Breast, 2018, 41, 107–112.

    Article  Google Scholar 

  57. Akbarnejad Z, Eskandary H, Vergallo C, Nematollahi-Mahani S N, Dini L, Darvishzadeh-Mahani F, Ahmadi M. Effects of extremely low-frequency pulsed electromagnetic fields (ELF-PEMFs) on glioblastoma cells (U87). Electromagnetic Biology & Medicine, 2017, 36, 238–247.

    Article  Google Scholar 

  58. Bergandi L, Lucia U, Grisolia G, Granata R, Gesmundo I, Ponzetto A, Paolucci E, Borchiellini R, Ghigo E, Silvagno F. The extremely low frequency electromagnetic stimulation selective for cancer cells elicits growth arrest through a metabolic shift. Biochimica et Biophysica Acta (BBA) — Molecular Cell Research, 2019, 1866, 1389–1397.

    Article  Google Scholar 

  59. Ahmadi-Zeidabadi M, Akbarnejad Z, Esmaeeli M, Masoumi-Ardakani Y, Mohammadipoor-Ghasemabad L, Eskandary H. Impact of extremely low-frequency electromagnetic field (100 Hz, 100 G) exposure on human glioblastoma U87 cells during Temozolomide administration. Electromagnetic Biology and Medicine, 2019, 38, 198–209.

    Article  Google Scholar 

  60. Han Q, Chen R, Wang F J, Chen S, Sun X S, Guan X, Yang Y, Peng B J, Pan X D, Li J F, Yi W J, Li P, Zhang H W, Feng D F, Chen A, Li X H, Li S H, Yin Z M. Pre-exposure to 50 Hz-electromagnetic fields enhanced the antiproliferative efficacy of 5-fluorouracil in breast cancer MCF-7 cells. PLOS ONE, 2018, 13, e0192888.

    Article  Google Scholar 

  61. Baharara J, Hosseini N, Farzin T R. Extremely low frequency electromagnetic field sensitizes cisplatin-resistant human ovarian adenocarcinoma cells via P53 activation. Cytotechnology, 2016, 68, 1403–1413.

    Article  Google Scholar 

  62. Castello P R, Hill I, Sivo F, Portelli L, Barnes F, Usselman R, Martino C F. Inhibition of cellular proliferation and enhancement of hydrogen peroxide production in fibrosarcoma cell line by weak radio frequency magnetic fields. Bioelectromagnetics, 2014, 35, 598–602.

    Article  Google Scholar 

  63. Jimenez H, Wang M H, Zimmerman J W, Pennison M J, Sharma S, Surratt T, Xu Z X, Brezovich I, Absher D, Myers R M, DeYoung B, Caudell D L, Chen D Q, Lo H W, Lin H K, Godwin D W, Olivier M, Ghanekar A, Pasche B C. Tumour-specific amplitude-modulated radiofrequency electromagnetic fields induce differentiation of hepatocellular carcinoma via targeting Cav3.2 T-type voltage-gated calcium channels and Ca2+ influx. EBioMedicine, 2019, 44, 209–224.

    Article  Google Scholar 

  64. Buckner C A, Buckner A L, Koren S A, Persinger M A, Lafrenie R M. Exposure to a specific time-varying electromagnetic field inhibits cell proliferation via cAMP and ERK signaling in cancer cells. Bioelectromagnetics, 2018, 39, 217–230.

    Article  Google Scholar 

  65. Garg A A, Jones T H, Moss S M, Mishra S, Kaul K, Ahirwar D K, Ferree J, Kumar P, Subramaniam D, Ganju R K, Subramaniam V V, Song J W. Electromagnetic fields alter the motility of metastatic breast cancer cells. Communications Biology, 2019, 2, 303.

    Article  Google Scholar 

  66. Stupp R, Mason W P, van den Bent M J, Weller M, Fisher B, Taphoorn M J B, Belanger K, Brandes A A, Marosi C, Bogdahn U, Mirimanoff M D. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New England Journal of Medicine, 2005, 352, 987–996.

    Article  Google Scholar 

  67. Kirson E D, Dbalý V, Tovarys F, Vymazal J, Soustiel J F, Itzhaki A, Mordechovich D, Steinberg-Shapira S, Gurvich Z, Schneiderman R, Wasserman Y, Salzberg M, Ryffel B, Goldsher D, Dekel E, Palti Y. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10152–10157.

    Article  Google Scholar 

  68. Kirson E D, Schneiderman R S, Dbaly V, Tovarys F, Vy-mazal J, Itzhaki A, Mordechovich D, Gurvich Z, Shmueli E, Goldsher D, Wasserman Y, Palti Y. Chemotherapeutic treatment efficacy and sensitivity are increased by adjuvant alternating electric fields (TTFields). BMC Medical Physics, 2009, 9, 1.

    Article  Google Scholar 

  69. Stupp R, Taillibert S, Kanner A A, Kesari S, Steinberg D M, Toms S A, Taylor L P, Lieberman F, Silvani A, Fink K L, Barnett G H, Zhu J J, Henson J W, Engelhard H H, Chen T C, Tran D D, Sroubek J, Tran N D, Hottinger A F, Landolfi J, Desai R, Caroli M, Kew Y, Honnorat J, Idbaih A, Kirson E D, Weinberg U, Palti Y, Hegi M E, Ram Z. Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: A randomized clinical trial. JAMA, 2015, 314, 2535–2543.

    Article  Google Scholar 

  70. Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B, Toms S, Idbaih A, Ahluwalia M S, Fink K, Meco F D, Lieberman F, Zhu J J, Stragliotto G, Tran D, Brem S, Hottinger A, Kirson E D, Lavy-Shahaf G, Weinberg U, Kim C Y, Paek S H, Nicholas G, Bruna J, Hirte H, Weller M, Palti Y, Hegi M E, Ram Z. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: A randomized clinical trial. JAMA, 2017, 318, 2306–2316.

    Article  Google Scholar 

  71. Guzauskas G F, Salzberg M, Wang B C. Estimated lifetime survival benefit of tumor treating fields and temozolomide for newly diagnosed glioblastoma patients. CNS Oncology, 2018, 7, CNS23.

    Article  Google Scholar 

  72. Kirson E D, Gurvich Z, Schneiderman R, Dekel E, Itzhaki A, Wasserman Y, Schatzberger R, Palti Y. Disruption of cancer cell replication by alternating electric fields. Cancer Research, 2004, 64, 3288–3295.

    Article  Google Scholar 

  73. Kirson E D, Giladi M, Gurvich Z, Itzhaki A, Mordechovich D, Schneiderman R S, Wasserman Y, Ryffel B, Goldsher D, Palti Y. Alternating electric fields (TTFields) inhibit metastatic spread of solid tumors to the lungs. Clinical & Experimental Metastasis, 2009, 26, 633–640.

    Article  Google Scholar 

  74. Berkelmann L, Bader A, Meshksar S, Dierks A, Hatipoglu Majernik G, Krauss JK, Schwabe K, Manteuffel D, Ngezahayo A. Tumour-treating fields (TTFields): Investigations on the mechanism of action by electromagnetic exposure of cells in telophase/cytokinesis. Scientific Reports, 2019, 9, 7362.

    Article  Google Scholar 

  75. Chen Y B, Li J, Qi Y, Miao X, Zhou Y, Ren D, Guo G Z. The effects of electromagnetic pulses (EMP) on the bioactivity of insulin and a preliminary study of mechanism. International Journal of Radiation Biology, 2010, 86, 22–26.

    Article  Google Scholar 

  76. Bahaoddini A, Mohabatkar H, Nikfarjam A, Keshtgar S. Effect of exposure to low frequency electromagnetic field on the plasma glucose, insulin, triglyceride and cholesterol of male rats. Journal of Applied Animal Research, 2011, 34, 179–180.

    Article  Google Scholar 

  77. Ocal I, Kalkan T, Gunay I. Effects of alternating magnetic field on the metabolism of the healthy and diabetic organisms. Brazilian Archives of Biology and Technology, 2008, 51, 523–530.

    Article  Google Scholar 

  78. Sakurai T, Yoshimoto M, Koyama S, Miyakoshi J. Exposure to extremely low frequency magnetic fields affects insulin-secreting cells. Bioelectromagnetics, 2008, 29, 118–124.

    Article  Google Scholar 

  79. Nafisi S, Nezhady M A, Asghari M H. Comparative and mixture effect of cynodon dactylon, electroMagnetic field and insulin on diabetic mouse. Balkan medical journal, 2012, 29, 345–348.

    Article  Google Scholar 

  80. Suhariningsih, Notobroto H B, Winarni D, Hussein S A, Prijo T A. Permanent magnetic field, direct electric field, and infrared to reduce blood glucose level and hepatic function in mus musculus with diabetic mellitus. Journal of Physics: Conference Series, 2017, 853, 012024.

    Google Scholar 

  81. Khaki A A, Ali-Hemmati A, Nobahari R. A study of the effects of electromagnetic field on islets of langerhans and insulin release in rats. Crescent journal of medical and biological sciences, 2015, 2, 1–5.

    Google Scholar 

  82. Farashi S. Interaction between pancreatic β cell and electromagnetic fields: A systematic study toward finding the natural frequency spectrum of β cell system. Electromagnetic Biology and Medicine, 2017, 36, 341–356.

    Article  Google Scholar 

  83. Farashi S, Sasanpour P, Rafii-Tabar H. Interaction of low frequency external electric fields and pancreatic β-cell: A mathematical modeling approach to identify the influence of excitation parameters. International journal of radiation biology, 2018, 94, 1038–1048.

    Article  Google Scholar 

  84. Cheing G L Y, Li X, Huang L, Kwan R L C, Cheung K K. Pulsed electromagnetic fields (PEMF) promote early wound healing and myofibroblast proliferation in diabetic rats. Bioelectromagnetics, 2014, 35, 161–169.

    Article  Google Scholar 

  85. Choi H M C, Cheung A K K, Ng G Y F, Cheing G L Y. Effects of pulsed electromagnetic field (PEMF) on the tensile biomechanical properties of diabetic wounds at different phases of healing. PLoS One, 2018, 13, e0191074.

    Article  Google Scholar 

  86. Yang J, Sun L, Fan X, Yin B, Kang Y, An S, Tang L. Pulsed electromagnetic fields alleviate streptozotocininduced diabetic muscle atrophy. Molecular Medicine Reports, 2018, 18, 1127–1133.

    Google Scholar 

  87. Jing D, Cai J, Shen G, Huang J, Li F, Li J, Lu L, Luo E, Xu Q. The preventive effects of pulsed electromagnetic fields on diabetic bone loss in streptozotocin-treated rats. Osteoporosis International, 2011, 22, 1885–1895.

    Article  Google Scholar 

  88. Cai J, Li W, Sun T, Li X, Luo E, Jing D. Pulsed electromagnetic fields preserve bone architecture and mechanical properties and stimulate porous implant osseointegration by promoting bone anabolism in type 1 diabetic rabbits. Osteoporosis International, 2018, 29, 1177–1191.

    Article  Google Scholar 

  89. Han Y, Yan Z D, Ge S H. Promotional effects of exogenous stimulation with pulsed electromagnetic fields on skin wound healing in diabetic rats. Journal of Hainan Medical University, 2019, 5, 1–5.

    Google Scholar 

  90. Goudarzi I, Hajizadeh S, Salmani M E, Abrari K. Pulsed electromagnetic fields accelerate wound healing in the skin of diabetic rats. Bioelectromagnetics, 2010, 31, 318–323.

    Google Scholar 

  91. Gozen H, Demirel C, Akan M, Tarakcioglu M. Effects of pulsed electromagnetic fields on lipid peroxidation and antioxidant levels in blood and liver of diabetic rats. European Journal of Therapeutics, 2018, 23, 152–158.

    Article  Google Scholar 

  92. Mert T, Gunay I, Ocal I. Neurobiological effects of pulsed magnetic field on diabetes-induced neuropathy. Bioelectromagnetics, 2010, 31, 39–47.

    Google Scholar 

  93. Aikins A R, Hong S W, Kim H J, Yoon C H, Chung J H, Kim M, Kim C W. Extremely low-frequency electromagnetic field induces neural differentiation of hBM-MSCs through regulation of (Zn)-metallothionein-3. Bioelectromagnetics, 2017, 38, 364–373.

    Article  Google Scholar 

  94. Cho H, Seo Y K, Yoon H H, Kim S C, Kim S M, Song K Y, Park J K. Neural stimulation on human bone marrow-derived mesenchymal stem cells by extremely low frequency electromagnetic fields. Biotechnology Progress, 2012, 28, 1329–1335.

    Article  Google Scholar 

  95. Park J E, Seo Y K, Yoon H H, Kim C W, Park J K, Jeon S. Electromagnetic fields induce neural differentiation of human bone marrow derived mesenchymal stem cells via ROS mediated EGFR activation. Neurochemistry International, 2013, 62, 418–424.

    Article  Google Scholar 

  96. Bai W F, Xu W C, Feng Y, Huang H, Li X P, Deng C Y, Zhang M S. Fifty-hertz electromagnetic fields facilitate the induction of rat bone mesenchymal stromal cells to differentiate into functional neurons. Cytotherapy, 2013, 15, 961–970.

    Article  Google Scholar 

  97. Cheng Y N, Dai Y Q, Zhu X M, Xu H C, Cai P, Xia R H, Mao L Z, Zhao B Q, Fan W Y. Extremely low-frequency electromagnetic fields enhance the proliferation and differentiation of neural progenitor cells cultured from ischemic brains. Neuroreport, 2015, 26, 896–902.

    Article  Google Scholar 

  98. Tasset I, Medina F J, Jimena I, Aguera E, Gascon F, Feijoo M, Sanchez-Lopez F, Luque E, Pena J, Drucker-Colin R, Tunez I. Neuroprotective effects of extremely low-frequency electromagnetic fields on a Huntington’s disease rat model: Effects on neurotrophic factors and neuronal density. Neuroscience, 2012, 209, 54–63.

    Article  Google Scholar 

  99. Lei T, Jing D, Xie K N, Jiang M G, Li F J, Cai J, Wu X M, Tang C, Xu Q L, Liu J, Guo W, Shen G H, Luo E P. Therapeutic effects of 15 Hz pulsed electromagnetic field on diabetic peripheral neuropathy in streptozotocin-treated rats. PLoS One, 2013, 8, e61414.

    Article  Google Scholar 

  100. Kavlak E, Belge F, Unsal C, Uner A G, Cavlak U, Comlekci S. Effects of pulsed electromagnetic field and swimming exercise on rats with experimental sciatic nerve injury. Journal of Physical Therapy Science, 2014, 26, 1355–1361.

    Article  Google Scholar 

  101. Urnukhsaikhan E, Mishig-Ochir T, Kim S C, Park J K, Seo Y K. Neuroprotective effect of low frequency-pulsed electromagnetic fields in ischemic stroke. Applied Biochemistry Biotechnology, 2017, 181, 1360–1371.

    Article  Google Scholar 

  102. Podda M V, Leone L, Barbati S A, Mastrodonato A, Li Puma D D, Piacentini R, Grassi C. Extremely low-frequency electromagnetic fields enhance the survival of newborn neurons in the mouse hippocampus. European Journal Neuroscience, 2014, 39, 893–903.

    Article  Google Scholar 

  103. Karimi S A, Salehi I, Shykhi T, Zare S, Komaki A. Effects of exposure to extremely low-frequency electromagnetic fields on spatial and passive avoidance learning and memory, anxiety-like behavior and oxidative stress in male rats. Behavioural Brain Research, 2019, 359, 630–638.

    Article  Google Scholar 

  104. Li Y, Zhang Y C, Wang W H, Zhang Y X, Yu Y, Cheing G L Y, Pan W. Effects of pulsed electromagnetic fields on learning and memory abilities of STZ-induced dementia rats. Electromagnetic Biology and Medicine, 2019, 38, 123–130.

    Article  Google Scholar 

  105. Hatef B, Hashemirad F, Meftahi G H, Simorgh L, Jahromi S R, Rahimi F, Togha M. The efficiency of pulsed electromagnetic field in refractory migraine headaches: A randomized, single-blinded, placebo-controlled, parallel group. International Journal of Clinical Trials, 2016, 3, 24–31.

    Article  Google Scholar 

  106. Paolucci T, Piccinini G, Nusca S M, Marsilli G, Mannocci A, La Torre G, Saraceni V M, Vulpiani M C, Villani C. Efficacy of dietary supplement with nutraceutical composed combined with extremely-low-frequency electromagnetic fields in carpal tunnel syndrome. Journal of Physical Therapy Science, 2018, 30, 777–784.

    Article  Google Scholar 

  107. Ikehara T, Yamaguchi H, Miyamoto H. Effects of electromagnetic fields on membrane ion transport of cultured cells. The Journal of Medical Investigation: JMI, 1998, 45, 47–56.

    Google Scholar 

  108. Selvam R, Ganesan K, Raju K V S N, Gangadharan A C, Manohar B M, Puvanakrishnan R. Low frequency and low intensity pulsed electromagnetic field exerts its antiinflammatory effect through restoration of plasma membrane calcium ATPase activity. Life Sciences, 2007, 80, 2403–2410.

    Article  Google Scholar 

  109. Ross C L, Pettenati M J, Procita J, Cathey L, George S K, Almeida-Porada G. Evaluation of cytotoxic and genotoxic effects of extremely low-frequency electromagnetic field on mesenchymal stromal cells. Global Advances in Health and Medicine, 2018, 7, 1–7.

    Article  Google Scholar 

  110. Ross C L, Ang D C, Almeida-Porada G. Targeting mesenchymal stromal cells/pericytes (MSCs) with pulsed electromagnetic field (PEMF) has the potential to treat rheumatoid arthritis. Frontiers in Immunology, 2019, 10, 266.

    Article  Google Scholar 

  111. Akan Z, Aksu B, Tulunay A, Bilsel S, Inhan-Garip A. Extremely low-frequency electromagnetic fields affect the immune response of monocyte-derived macrophages to pathogens. Bioelectromagnetics, 2010, 31, 603–612.

    Article  Google Scholar 

  112. Ross C L, Harrison B S. Effect of pulsed electromagnetic field on inflammatory pathway markers in RAW 264.7 murine macrophages. Journal Inflammation Research, 2013, 6, 45–51.

    Article  Google Scholar 

  113. Kubat N J, Moffett J, Fray L M. Effect of pulsed electromagnetic field treatment on programmed resolution of inflammation pathway markers in human cells in culture. Journal Inflammation Research, 2015, 8, 59–69.

    Google Scholar 

  114. Merighi S, Gessi S, Bencivenni S, Battistello E, Vincenzi F, Setti S, Cadossi M, Borea P A, Cadossi R, Varani K. Signaling pathways involved in anti-inflammatory effects of pulsed electromagnetic field in microglial cells. Cytokine, 2020, 125, 154777.

    Article  Google Scholar 

  115. Cichon N, Saluk-Bijak J, Miller E, Sliwinski T, Synowiec E, Wigner P, Bijak M. Evaluation of the effects of extremely low frequency electromagnetic field on the levels of some inflammatory cytokines in post-stroke patients. Journal of Rehabilitation Medicine, 2019, 51, 854–860.

    Google Scholar 

  116. Cichon N, Bijak M, Czarny P, Miller E, Synowiec E, Sliwinski T, Saluk-Bijak J. Increase in blood levels of growth factors involved in the neuroplasticity process by using an extremely low frequency electromagnetic field in post-stroke patients. Frontiers in Aging Neuroscience, 2018, 10, 294.

    Article  Google Scholar 

  117. Mahaki H, Tanzadehpanah H, Jabarivasal N, Sardanian K, Zamani A. A review on the effects of extremely low frequency electromagnetic field (ELF-EMF) on cytokines of innate and adaptive immunity. Electromagnetic Biology and Medicine, 2019, 38, 84–95.

    Article  Google Scholar 

  118. Bagnato G L, Miceli G, Marino N, Sciortino D, Bagnato G F. Pulsed electromagnetic fields in knee osteoarthritis: A double blind, placebo-controlled, randomized clinical trial. Rheumatology, 2016, 55, 755–762.

    Article  Google Scholar 

  119. Corallo C, Volpi N, Franci D, Vannoni D, Leoncini R, Landi G, Guarna M, Montella A, Albanese A, Battisti E, Fioravanti A, Nuti R, Giordano N. Human osteoarthritic chondrocytes exposed to extremely low-frequency electromagnetic fields (ELF) and therapeutic application of musically modulated electromagnetic fields (TAMMEF) systems: A comparative study. Rheumatology International, 2013, 33, 1567–1575.

    Article  Google Scholar 

  120. Wang T, Yang L, Jiang J, Liu Y, Fan Z, Zhong C, He C. Pulsed electromagnetic fields: Promising treatment for osteoporosis. Osteoporosis International, 2019, 30, 267–276.

    Article  Google Scholar 

  121. Liu H F, Yang L, He H C, Zhou J, Liu Y, Wang C Y, Wu Y C, He C Q. Pulsed electromagnetic fields on postmenopausal osteoporosis in southwest China: A randomized, active-controlled clinical trial. Bioelectromagnetics, 2013, 34, 323–332

    Article  Google Scholar 

  122. Liu H F, He H C, Yang L, Yang Z Y, Yao K, Wu Y C, Yang X B, He C Q. Pulsed electromagnetic fields for postmenopausal osteoporosis and concomitant lumbar osteoarthritis in southwest China using proximal femur bone mineral density as the primary endpoint: Study protocol for a randomized controlled trial. Trials, 2015, 16, 265.

    Article  Google Scholar 

  123. Tong J, Sun L J, Zhu B, Fan Y, Ma X F, Yu L Y, Zhang J B. Pulsed electromagnetic fields promote the proliferation and differentiation of osteoblasts by reinforcing intracellular calcium transients. Bioelectromagnetics, 2017, 38, 541–549.

    Article  Google Scholar 

  124. Yuan J, Xin F, Jiang W X. Underlying signaling pathways and therapeutic applications of pulsed electromagnetic fields in bone repair. Cellular Physiology Biochemistry, 2018, 46, 1581–1594.

    Article  Google Scholar 

  125. Daish C, Blanchard R, Fox K, Pivonka P, Pirogova E. The Application of pulsed electromagnetic fields (PEMFs) for bone fracture repair: past and perspective findings. Annals of Biomedical Engineering, 2018, 46, 525–542.

    Article  Google Scholar 

  126. Yan J L, Zhou J, Ma H P, Ma X N, Gao Y H, Shi W G, Fang Q Q, Ren Q, Xian C J, Chen K M. Pulsed electromagnetic fields promote osteoblast mineralization and maturation needing the existence of primary cilia. Molecular and Cellular Endocrinology, 2015, 404, 132–140.

    Article  Google Scholar 

  127. Xie Y F, Shi W G, Zhou J, Gao Y H, Li S F, Fang Q Q, Wang M G, Ma H P, Wang J F, Xian C J, Chen K M. Pulsed electromagnetic fields stimulate osteogenic differentiation and maturation of osteoblasts by upregulating the expression of BMPRII localized at the base of primary cilium. Bone, 2016, 93, 22–32.

    Article  Google Scholar 

  128. Nayak S, Dey T, Naskar D, Kundu S C. The promotion of osseointegration of titanium surfaces by coating with silk protein sericin. Biomaterials, 2013, 34, 2855–2864

    Article  Google Scholar 

  129. Jing D, Zhai M M, Tong S C, Xu F, Cai J, Shen G H, Wu Y, Li X K, Xie K N, Liu J, Xu Q L, Luo E P. Pulsed electromagnetic fields promote osteogenesis and osseointegration of porous titanium implants in bone defect repair through a Wnt/β-catenin signaling-associated mechanism. Scientific Reports, 2016, 6, 32045.

    Article  Google Scholar 

  130. Seeliger C, Falldorf K, Sachtleben J, Van Griensven M. Low-frequency pulsed electromagnetic fields significantly improve time of closure and proliferation of human tendon fibroblasts. European Journal of Medical Research, 2014, 19, 37.

    Article  Google Scholar 

  131. Parker R, Markov M. The treatment of tendon injury with electromagnetic fields evidenced by advanced ultrasound image processing. Electromagnetic Biology and Medicine, 2015, 34, 233–237.

    Article  Google Scholar 

  132. Tucker J J, Cirone J M, Morris T R, Nuss C A, Huegel J, Waldorff E I, Zhang N L, Ryaby J T, Soslowsky L J. Pulsed electromagnetic field therapy improves tendon-to-bone healing in a rat rotator cuff repair model. Journal of Orthopaedic Research, 2017, 35, 902–909.

    Article  Google Scholar 

  133. Marmotti A, Peretti G M, Mattia S, Mangiavini L, de Girolamo L, Vigano M, Setti S, Bonasia D E, Blonna D, Bellato E, Ferrero G, Castoldi F. Pulsed electromagnetic fields improve tenogenic commitment of umbilical cord-derived mesenchymal stem cells: A potential strategy for tendon repair — An in vitro study. Stem Cells International, 2018, 2018, 9048237.

    Article  Google Scholar 

  134. Xu H X, Zhang J, Lei Y T, Han Z Y, Rong D M, Yu Q, Zhao M, Tian J. Low frequency pulsed electromagnetic field promotes C2C12 myoblasts proliferation via activation of MAPK/ERK pathway. Biochemical and Biophysical Research Communications, 2016, 479, 97–102.

    Article  Google Scholar 

  135. Saliev T, Mustapova Z, Kulsharova G, Bulanin D, Mikhalovsky S. Therapeutic potential of electromagnetic fields for tissue engineering and wound healing. Cell Proliferation, 2014, 47, 485–493.

    Article  Google Scholar 

  136. Pesce M, Patruno A, Speranza L, Reale M. Extremely low frequency electromagnetic field and wound healing: Implication of cytokines as biological mediators. European Cytokine Network, 2013, 24, 1–10.

    Article  Google Scholar 

  137. Bai W F, Xu W C, Zhu H X, Huang H, Wu B, Zhang M S. Efficacy of 50 Hz electromagnetic fields on human epidermal stem cell transplantation seeded in collagen sponge scaffolds for wound healing in a murine model. Bioelectromagnetics, 2017, 38, 204–212.

    Article  Google Scholar 

  138. Ma K C, Baumhauer J F. Pulsed electromagnetic field treatment in wound healing. Current Orthopaedic Practice, 2013, 24, 487–492.

    Article  Google Scholar 

  139. Guerriero F, Botarelli E, Mele G, Polo L, Zoncu D, Renati P, Sgarlata C, Rollone M, Ricevuti G, Maurizi N, Francis M, Rondanelli M, Perna S, Guido D, Mannu P. Effectiveness of an innovative pulsed electromagnetic fields stimulation in healing of untreatable skin ulcers in the frail elderly: Two case reports. Case Reports in Dermatological Medicine, 2015, 2015, 1–6.

    Article  Google Scholar 

  140. Patruno A, Ferrone A, Costantini E, Franceschelli S, Pesce M, Speranza L, Amerio P, D’Angelo C, Felaco M, Grilli A, Reale M. Extremely low-frequency electromagnetic fields accelerates wound healing modulating MMP-9 and inflammatory cytokines. Cell Prolifertion, 2018, 51, e12432.

    Article  Google Scholar 

  141. Costantini E, Sinjari B, D’Angelo C, Murmura G, Reale M, Caputi S. Human gingival fibroblasts exposed to extremely low-frequency electromagnetic fields: In vitro model of wound-healing improvement. International Journal Molecular Sciences, 2019, 20, 2108.

    Article  Google Scholar 

  142. Sharma S, Rais A, Sandhu R, Nel W, Ebadi M. Clinical significance of metallothioneins in cell therapy and nano-medicine. International Journal of Nanomedicine, 2013, 8, 1477–1488.

    Article  Google Scholar 

  143. Eraslan G, Bilgili A, Akdogan M, Yarsan E, Essiz D, Altintas L. Studies on antioxidant enzymes in mice exposed to pulsed electromagnetic fields. Ecotoxicology and Environmental Safety, 2007, 66, 287–289.

    Article  Google Scholar 

  144. Wang C Y, Liu Y, Wang Y, Wei Z J, Suo D M, Ning G Z, Wu Q L, Feng S Q, Wan C X. Low-frequency pulsed electromagnetic field promotes functional recovery, reduces inflammation and oxidative stress, and enhances HSP70 expression following spinal cord injury. Molecular Medicine Reports, 2019, 19, 1687–1693.

    Google Scholar 

  145. Tunez I, Drucker-Colin R, Jimena I, Medina F J, Munoz M D, Pena J, Montilla P. Transcranial magnetic stimulation attenuates cell loss and oxidative damage in the striatum induced in the 3-nitropropionic model of Huntington’s disease. Journal of Neurochemistry, 2006, 97, 619–630.

    Article  Google Scholar 

  146. Tasset I, Perez-Herrera A, Medina F J, Arias-Carrion O, Drucker-Colin R, Tunez I. Extremely low-frequency electromagnetic fields activate the antioxidant pathway Nrf2 in a Huntington’s disease-like rat model. Brain Stimulation, 2013, 6, 84–86.

    Article  Google Scholar 

  147. Balind S R, Selakovic V, Radenovic L, Prolic Z, Janac B. Extremely low frequency magnetic field (50 Hz, 0.5 mT) reduces oxidative stress in the brain of gerbils submitted to global cerebral ischemia. PloS One, 2014, 9, e88921.

    Article  Google Scholar 

  148. Falone S, Marchesi N, Osera C, Fassina L, Comincini S, Amadio M, Pascale A. Pulsed electromagnetic field (PEMF) prevents pro-oxidant effects of H2O2 in SK-N-BE(2) human neuroblastoma cells. International Journal of Radiation Biology, 2016, 92, 281–286.

    Article  Google Scholar 

  149. Cichon N, Bijak M, Miller E, Saluk J. Extremely low frequency electromagnetic field (ELF-EMF) reduces oxidative stress and improves functional and psychological status in ischemic stroke patients. Bioelectromagnetics, 2017, 38, 386–396.

    Article  Google Scholar 

  150. Cichon N, Bijak M, Synowiec E, Miller E, Sliwinski T, Saluk-Bijak J. Modulation of antioxidant enzyme gene expression by extremely low frequency electromagnetic field in post-stroke patients. Scandinavian Journal of Clinical and Laboratory Investigation, 2019, 78, 626–631.

    Article  Google Scholar 

  151. Mahmoudinasab H, Sanie-Jahromi F, Saadat M. Effects of extremely low-frequency electromagnetic field on expression levels of some antioxidant genes in human MCF-7 cells. Molecular Biology Research Communications, 2016, 5, 77–85.

    Google Scholar 

  152. Ehnert S, Fentz A K, Schreiner A, Birk J, Wilbrand B, Ziegler P, Reumann M K, Wang H B, Falldorf K, Nussler A K. Extremely low frequency pulsed electromagnetic fields cause antioxidative defense mechanisms in human osteoblasts via induction of •O2 and H2O2. Scientific Reports, 2017, 7, 14544.

    Article  Google Scholar 

  153. Bialy D, Wawrzynska M, Bil-Lula I, Krzywonos-Zawadzka A, Sapa-Wojciechowska A, Arkowski J, Wozniak M, Sawicki G. Low frequency electromagnetic field decreases ischemia-reperfusion injury of human cardiomyocytes and supports their metabolic function. Experimental Biology and Medicine, 2018, 243, 809–816.

    Article  Google Scholar 

  154. Hore P J, Mouritsen H. The radical-pair mechanism of magnetoreception. Annual Review of Biophysics, 2016, 45, 299–344.

    Article  Google Scholar 

  155. Fleissner G, Stahl B, Thalau P, Falkenberg G, Fleissner G. A novel concept of Fe-mineral-based magnetoreception: histological and physicochemical data from the upper beak of homing pigeons. Naturwissenschaften, 2007, 94, 631–642.

    Article  Google Scholar 

  156. Panagopoulos D J, Karabarbounis A, Margaritis L H. Mechanism for action of electromagnetic fields on cells. Biochemical and Biophysical Research Communications, 2002, 298, 95–102.

    Article  Google Scholar 

  157. Panagopoulos D J, Messini N, Karabarbounis A, Philippetis A L, Margaritis L H. A mechanism for action of oscillating electric fields on cells. Biochemical & Biophysical Research Communications, 2000, 272, 634–640.

    Article  Google Scholar 

  158. Schulten K, Swenberg C E, Weller A. A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion. Zeitschrift Für Physikalische Chemie, 1978, 111, 1–5.

    Article  Google Scholar 

  159. Bazylinski D A, Frankel R B. Magnetosome formation in prokaryotes. Nature Reviews Microbiology, 2004, 2, 217–230.

    Article  Google Scholar 

  160. Beason R C, Semm P. Does the avian ophthalmic nerve carry magnetic navigational information? Journal of Experimental Biology, 1996, 199, 1241–1244.

    Article  Google Scholar 

  161. Buchachenko AL, Kouznetsov D A, Orlova M A, Markarian A A. Magnetic isotope effect of magnesium in phosphoglycerate kinase phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10793–10796.

    Article  Google Scholar 

  162. Hore P J. Are biochemical reactions affected by weak magnetic fields? Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1357–1358.

    Article  Google Scholar 

  163. Buchachenko A L, Kuznetsov D A. Magnetic field affects enzymatic ATP synthesis. Journal of the American Chemical Society, 2008, 130, 12868–12869.

    Article  Google Scholar 

  164. Buchachenko A L, Orlov A P, Kuznetsov D A, Breslavskaya N N. Magnetic isotope and magnetic field effects on the DNA synthesis. Nucleic Acids Research, 2013, 41, 8300–8307.

    Article  Google Scholar 

  165. Lucia U. Thermodynamics and cancer stationary states. Physica A: Statistical Mechanics and its Applications, 2013, 392, 3648–3653.

    Article  MathSciNet  MATH  Google Scholar 

  166. Lucia U. Bioengineering thermodynamics of biological cells. Theoretical Biology and Medical Modelling, 2015, 12, 29.

    Article  Google Scholar 

  167. Lucia U, Grisolia G. Second law efficiency for living cells. Frontiers in Bioscience, 2017, 9, 270–275.

    Article  Google Scholar 

  168. Lucia U, Grisolia G, Ponzetto A, Silvagno F. An engineering thermodynamic approach to select the electromagnetic wave effective on cell growth. Journal of Theoretical Biology, 2017, 429, 181–189.

    Article  Google Scholar 

  169. Bustamante C, Chemla Y R, Forde N R, Izhaky D. Mechanical processes in biochemistry. Annual Review of Biochemistry, 2004, 73, 705–748.

    Article  Google Scholar 

  170. Lucia U, Grisolia G. Constructal law and ion transfer in normal and cancer cells. Proceedings of the Romanian Academy Series A — Mathematics Physics Technical Sciences Information Science, 2018, 19, 213–218.

    MathSciNet  Google Scholar 

  171. Jia B, Xie L, Zheng Q, Yang P F, Zhang W J, Ding C, Qian A R, Shang P. A hypomagnetic field aggravates bone loss induced by hindlimb unloading in rat femurs. PLoS One, 2014, 9, e105604.

    Article  Google Scholar 

  172. Chibisov S M, Breus T K, Levitin A E, Drogova G M. Biological effects of planetary magnetic storms. Biofizika, 1995, 40, 959–968.

    Google Scholar 

  173. Yuan L Q, Wang C, Lu D F, Zhao X D, Tan L H, Chen X. Induction of apoptosis and ferroptosis by a tumor suppressing magnetic field through ROS-mediated DNA damage. Aging, 2020, 12, 3662–3681.

    Article  Google Scholar 

  174. Yuan L Q, Wang C, Zhu K, Li H M, Gu W Z, Zhou D M, Lai J Q, Zhou D, Lv Y, Tofani S, Chen X. The antitumor effect of static and extremely low frequency magnetic fields against nephroblastoma and neuroblastoma. Bioelectromagnetics, 2018, 39, 375–385.

    Article  Google Scholar 

  175. Filipovic N, Djukic T, Radovic M, Cvetkovic D, Curcic M, Markovic S, Peulic A, Jeremic B. Electromagnetic field investigation on different cancer cell lines. Cancer Cell International, 2014, 14, 84.

    Article  Google Scholar 

  176. Chen Y C, Chen C C, Tu W, Cheng Y T, Tseng FG. Design and fabrication of a microplatform for the proximity effect study of localized ELF-EMF on the growth of in vitro HeLa and PC-12 cells. Journal of Micromechanics & Microengineering, 2010, 20, 125023.

    Article  Google Scholar 

  177. Kavak S, Emre M, Meral I, Unlugenc H, Pelit A, Demirkazik A. Repetitive 50 Hz pulsed electromagnetic field ameliorates the diabetes-induced impairments in the relaxation response of rat thoracic aorta rings. International Journal of Radiation Biology, 2009, 85, 672–679.

    Article  Google Scholar 

  178. Hattapoglu E, Batmaz I, Dilek B, Karakoc M, Em S, Cevik R. Efficiency of pulsed electromagnetic fields on pain, disability, anxiety, depression, and quality of life in patients with cervical disc herniation: A randomized controlled study. Turkish Journal of Medical Sciences, 2019, 49, 1095–1101.

    Article  Google Scholar 

  179. Barbault A, Costa F P, Bottger B, Munden R F, Bomholt F, Kuster N, Pasche B. Amplitude-modulated electromagnetic fields for the treatment of cancer: Discovery of tumor-specific frequencies and assessment of a novel therapeutic approach. Journal of Experimental & Clinical Cancer Research, 2009, 28, 51.

    Article  Google Scholar 

  180. Crotty D, Silkstone G, Poddar S, Ranson R, Prina-Mello A, Wilson M T, Coey J M D. Reexamination of magnetic isotope and field effects on adenosine triphosphate production by creatine kinase. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1437–1442.

    Article  Google Scholar 

  181. Buchachenko A. Why magnetic and electromagnetic effects in biology are irreproducible and contradictory? Bioelectromagnetics, 2016, 37, 1–13.

    Article  Google Scholar 

  182. Gubceac N, Vovc V, Lazar G. Effects of electromagnetic field on human’s health — A short review. 3rd International Conference on Nanotechnologies and Biomedical Engineering, Chisinau, Moldova, 2016, 547–550.

  183. White M P, Alcock I, Grellier J, Wheeler B W, Hartig T, Warber S L, Bone A, Depledge M H, Fleming L E. Spending at least 120 minutes a week in nature is associated with good health and wellbeing. Scientific Reports, 2019, 9, 7730.

    Article  Google Scholar 

  184. Wang D L, Wang X S, Xiao R, Liu Y, He R Q. Tubulin assembly is disordered in a hypogeomagnetic field. Biochemical and Biophysical Research Communications, 2008, 376, 363–368.

    Article  Google Scholar 

  185. Mo W C, Zhang Z J, Wang D L, Liu Y, Bartlett P F, He R Q. Shielding of the geomagnetic field alters actin assembly and inhibits cell motility in human neuroblastoma cells. Scientific Reports, 2016, 6, 22624.

    Article  Google Scholar 

  186. Davies A M, Weinberg U, Palti Y. Tumor treating fields: A new frontier in cancer therapy. Annals of the New York Academy of Sciences, 2013, 1291, 86–95.

    Article  Google Scholar 

  187. Adeghate E, Ponery A S, Wahab, A. Effect of electrical field stimulation on insulin and glucagon secretion from the pancreas of normal and diabetic rats. Hormone & Metabolic Research, 2001, 33, 281–289.

    Article  Google Scholar 

  188. Vincenzi F, Targa M, Corciulo C, Gessi S, Merighi S, Setti S, Cadossi R, Borea P A, Varani K. The anti-tumor effect of A3 adenosine receptors is potentiated by pulsed electromagnetic fields in cultured neural cancer cells. PloS One, 2012, 7, e39317.

    Article  Google Scholar 

  189. Cichon N, Czarny P, Bijak M, Miller E, Sliwinski T, Szemraj J, Saluk-Bijak J. Benign effect of extremely low-frequency electromagnetic field on brain plasticity assessed by nitric oxide metabolism during poststroke rehabilitation. Oxidative Medicine and Cellular Longevity, 2017, 2017, 2181942.

    Article  Google Scholar 

  190. Fan W X, Qian F H, Ma Q L, Zhang P, Chen T T, Chen C H, Zhang Y, Deng P, Zhou Z, Yu Z P. 50 Hz electromagnetic field exposure promotes proliferation and cytokine production of bone marrow mesenchymal stem cells. International Journal of Clinical and Experimental Medicine, 2015, 8, 7394–7404.

    Google Scholar 

  191. Varani K, De Mattei M, Vincenzi F, Gessi S, Merighi S, Pellati A, Ongaro A, Caruso A, Cadossi R, Borea PA. Characterization of adenosine receptors in bovine chondrocytes and fibroblast-like synoviocytes exposed to low frequency low energy pulsed electromagnetic fields. Osteoarthritis and Cartilage, 2008, 16, 292–304.

    Article  Google Scholar 

  192. Esposito M, Lucariello A, Costanzo C, Fiumarella A, Giannini A, Riccardi G, Riccio I. Differentiation of human umbilical cord-derived mesenchymal stem cells, WJ-MSCs, into chondrogenic cells in the presence of pulsed electromagnetic fields. In Vivo, 2013, 27, 495–500.

    Google Scholar 

  193. Lu T, Huang Y X, Zhang C, Chai M X, Zhang J. Effect of pulsed electromagnetic field therapy on the osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells. Genetics and Molecular Research, 2015, 14, 11535–11542.

    Article  Google Scholar 

  194. Zhou J, Ming L G, Ge B F, Wang J Q, Zhu R Q, Wei Z, Ma H P, Xian C J, Chen K M. Effects of 50 Hz sinusoidal electromagnetic fields of different intensities on proliferation, differentiation and mineralization potentials of rat osteoblasts. Bone, 2011, 49, 753–761.

    Article  Google Scholar 

  195. Fathi E, Farahzadi R. Enhancement of osteogenic differentiation of rat adipose tissue-derived mesenchymal stem cells by zinc sulphate under electromagnetic field via the PKA, ERK1/2 and Wnt/beta-catenin signaling pathways. PLoS One, 2017, 12, e0173877.

    Article  Google Scholar 

  196. Kwan R L C, Wong W C, Yip S L, Chan K L, Zheng Y P, Cheing G L Y. Pulsed Electromagnetic field therapy promotes healing and microcirculation of chronic diabetic foot ulcers: A pilot study. Advances in Skin & Wound Care, 2015, 28, 212–219.

    Article  Google Scholar 

  197. Vianale G, Reale M, Amerio P, Stefanachi M, Di Luzio S, Muraro R. Extremely low frequency electromagnetic field enhances human keratinocyte cell growth and decreases proinflammatory chemokine production. British Journal of Dermatology, 2008, 158, 1189–1196.

    Article  Google Scholar 

  198. Gomez-Ochoa I, Gomez-Ochoa P, Gomez-Casal F, Cativiela E, Larrad-Mur L. Pulsed electromagnetic fields decrease proinflammatory cytokine secretion (IL-1beta and TNF-alpha) on human fibroblast-like cell culture. Rheumatology International, 2011, 31, 1283–1289.

    Article  Google Scholar 

  199. Ceccarelli G, Bloise N, Mantelli M, Gastaldi G, Fassina L, De Angelis M G, Ferrari D, Imbriani M, Visai L. A comparative analysis of the in vitro effects of pulsed electromagnetic field treatment on osteogenic differentiation of two different mesenchymal cell lineages. Biores Open Access, 2013, 2, 283–294.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by National Natural Science Foundation of China (51975245 and 52075214), Jilin Provincial Science & Technology Department (20190303039SF), and Key Scientific & Technological Research & Development Projects in Jilin Province (2020C023-3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shujun Zhang or Zhenning Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yan, X., Zhang, S. et al. The Effects of Electromagnetic Fields on Human Health: Recent Advances and Future. J Bionic Eng 18, 210–237 (2021). https://doi.org/10.1007/s42235-021-0015-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-021-0015-1

Keywords

Navigation