Skip to main content
Log in

Effect of Anodizing Process on Inter Laminar Shear Strength of GLARE Composite through T-Peel Test: Experimental and Numerical Approach

  • Research paper
  • Published:
Experimental Techniques Aims and scope Submit manuscript

A Correction to this article was published on 18 February 2021

This article has been updated

Abstract

Glass laminate aluminum reinforced epoxy (GLARE) is a vital class fiber metal laminates (FMLs) and advanced aircraft material. Despite the ongoing research and utilization of FMLs in applications like structures and aircraft, the weakness is particularly the materials’ delamination. This phenomenon is still observed as the primary confinement for an increased and efficient utilization of the materials. In this study, interlaminar shear strength (ILSS) of GLARE composite is improved through many chemical treatments and the anodizing process. T-peel test characterizes the ILSS through the ASTM D1876–08 standard. The numerical model was also developed to predict the ILSS of GLARE laminates and their performance. Results show that the anodizing process enhances the ILSS of GLARE composite. Anodizing makes the aluminium surface porous and improves glass fiber's adhesion with Aluminum surface. The numerical models successfully predict experimental results for un-anodized samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7.
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

References

  1. Marissen, R. (1989). Mechanical aspects related to fibre fracture in ARALL® 2 laminates. In Advances in Fatigue Sci. Technol. (pp. 697–707). Springer, Dordrecht.

  2. Mouritz, A. P., Gellert, E., Burchill, P., & Challis, K. (2001). Review of advanced composite structures for naval ships and submarines. Compos. Struct. 53(1), 21–42.

  3. Al Rashid A, Khan SA, Al-Ghamdi SG, Koç M (2020) Additive manufacturing: Technology, applications, markets, and opportunities for the built environment. Autom Constr 118:103268

    Article  Google Scholar 

  4. Asundi A, Choi AY (1997) Fiber metal laminates: an advanced material for future aircraft. J Mater Process Technol 63(1–3):384–394

    Article  Google Scholar 

  5. Sinmazçelik T, Avcu E, Bora MÖ, Çoban O (2011) A review: Fibre metal laminates, background, bonding types and applied test methods. Mater Des 32(7):3671–3685

    Article  Google Scholar 

  6. Cantwell WJ (2000) The mechanical properties of fibre-metal laminates based on glass fibre reinforced polypropylene. Compos Sci Technol 60(7):1085–1094

    Article  Google Scholar 

  7. Giasin K, Ayvar-Soberanis S, Hodzic A (2015) An experimental study on drilling of unidirectional GLARE fibre metal laminates. Compos Struct 133:794–808

    Article  Google Scholar 

  8. Khalid MY, Nasir MA, Ali A, Al Rashid A, Khan MR (2020) Experimental and numerical characterization of tensile property of jute/carbon fabric reinforced epoxy hybrid composites. SN Appl Sci 2(4):1–10

    Article  Google Scholar 

  9. Fedele R, Raka B, Hild F, Roux S (2009) Identification of adhesive properties in GLARE assemblies using digital image correlation. J Mech Phys Solids 57(7):1003–1016

    Article  CAS  Google Scholar 

  10. Kotik HG, Ipiña JEP (2017) Short-beam shear fatigue behavior of fiber metal laminate (Glare). Int J Fatigue 95:236–242

    Article  CAS  Google Scholar 

  11. Li Q, Batra RC, Graham I, Dillard DA (2019) Examining T-peel specimen bond length effects: Experimental and numerical explorations of transitions to steady-state debonding. Int J Solids Struct 180:72–83

    Article  Google Scholar 

  12. Ali A, Nasir MA, Khalid MY, Nauman S, Shaker K, Khushnood S et al (2019) Experimental and numerical characterization of mechanical properties of carbon/jute fabric reinforced epoxy hybrid composites. J Mech Sci Technol 33(9):4217–4226

    Article  Google Scholar 

  13. Khan F et al (2017) Effect of various surface preparation techniques on the delamination properties of vacuum infused Carbon fiber reinforced aluminum laminates (CARALL). Experiment Numeric Simulat 31(11):5265–5272

    Google Scholar 

  14. Kamocka M, Mania R J (2019, February) Numerical study of axially compressed FML profile including delamination. In: AIP Conference Proceedings (Vol. 2060, No. 1, p. 020003). AIP Publishing LLC

  15. Al Rashid A, Imran R, Khalid MY (2020) Determination of opening stresses for railway steel under low cycle fatigue using digital image correlation. Theor Appl Fract Mech 108:102601

    Article  Google Scholar 

  16. Lopes CS, Remmers JJ, Gürdal Z (2008) Influence of porosity on the interlaminar shear strength of fibre-metal laminates. Key Eng Mater 383:35–52. Trans Tech Publications Ltd

    Article  Google Scholar 

  17. Qaiser H, Umar S, Nasir A, Shah M, Nauman S (2015) Optimization of interlaminar shear strength behavior of anodized and unanodized ARALL composites fabricated through VARTM process. Int J Mater Form 8(3):481–493

    Article  Google Scholar 

  18. Van Rooijen RGJ, Sinke J, Van Der Zwaag S (2005) Improving the adhesion of thin stainless steel sheets for fibre metal laminate (FML) applications. J Adhes Sci Technol 19(16):1387–1396

    Article  Google Scholar 

  19. Kubit A, Trzepieciński T, Krasowski B, Slota J, Spišák E (2020) Strength analysis of a rib-stiffened GLARE-based thin-walled structure. Mater 13(13):2929

    Article  CAS  Google Scholar 

  20. de Freitas ST, Banea MD, Budhe S, de Barros S (2017) Interface adhesion assessment of composite-to-metal bonded joints under salt spray conditions using peel tests. Compos Struct 164:68–75

    Article  Google Scholar 

  21. Alderliesten RC (2007) Analytical prediction model for fatigue crack propagation and delamination growth in Glare. Int J Fatigue 29(4):628–646

    Article  CAS  Google Scholar 

  22. Alderliesten RC, Homan JJ (2006) Fatigue and damage tolerance issues of Glare in aircraft structures. Int J Fatigue 28(10):1116–1123

    Article  Google Scholar 

  23. Shim DJ, Alderliesten RC, Spearing SM, Burianek DA (2003) Fatigue crack growth prediction in GLARE hybrid laminates. Compos Sci Technol 63(12):1759–1767

    Article  CAS  Google Scholar 

  24. Wu G, Yang JM (2005) The mechanical behavior of GLARE laminates for aircraft structures. J Miner Metal Mater 57(1):72–79

    Article  Google Scholar 

  25. Kinsella M, Murray D, Crane D, Mancinelli J, Kranjc M (2001, November) Mechanical properties of polymeric composites reinforced with high strength glass fibers, vol 33. International SAMPE Technical Conference, pp 1644–1657

  26. Yoon S, Jong W, Soap H, Kwon H (2010) Effects of surface pre-treatment and void content on GLARE laminate process characteristics. J Mater Process Tech 210(8):1008–1016

    Article  Google Scholar 

  27. Xu Y, Li H, Shen Y, Liu S, Wang W, Tao J (2016) Improvement of adhesion performance between aluminum alloy sheet and epoxy based on anodizing technique. Int. J. Adhes. Adhes. 70:74–80

    Article  CAS  Google Scholar 

  28. Al Rashid A, Khalid MY, Imran R, Ali U, Koc M (2020) Utilization of banana fiber-reinforced hybrid composites in the sports industry. Materials 13(14):3167

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M.Y. Khalid or A. Al Rashid.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original article has been updated to correct second author name as A. Al Rashid, to include missing ORCIDs and to include the missing reference citations in the text.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, M., Al Rashid, A. & Sheikh, M. Effect of Anodizing Process on Inter Laminar Shear Strength of GLARE Composite through T-Peel Test: Experimental and Numerical Approach. Exp Tech 45, 227–235 (2021). https://doi.org/10.1007/s40799-020-00433-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40799-020-00433-1

Keywords

Navigation