Skip to main content
Log in

Transition metal-based metal–organic frameworks for environmental applications: a review

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Rapid industrialization is deteriorating air and water quality by exposing life to a wide range of pollutants, thus calling for efficient and affordable remediation strategies. Metal–organic frameworks (MOFs) are emerging materials for environmental remediation applications due to their high surface area, ordered porous structure, and application-specific tailoring of properties. In particular, transition metal-based frameworks are advanced adsorbents and catalysts for the remediation of organic and gaseous pollutants. Physicochemical properties are mainly dependent on the choice of the metal center, the oxidation state, and organic linkers. Bimetallic-, polyoxometalate-, and metal oxide-incorporated frameworks find applications as photocatalysts for decontamination of dyes, phenolic compounds, pesticides and pharmaceutical drugs under ultraviolet (UV)/visible radiations. Large surface area coupled with high activity of transition metal frameworks allows the capture and removal of inorganic and volatile organic pollutants. Transition metal frameworks convert gaseous pollutants into value-added chemicals. Frameworks containing synthetic and natural fibers are currently studied to remove chemical warfare agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AgIO3/MIL-53 (Fe):

Fe-based MOF composited with AgIO3

BiOBr/UiO-66:

Zr-based MOF combined with BiOBr

CdBDC:

Cadmium 1,4-benzenedicarboxylate

Co2Cl2(BBTA):

Co2Cl2(1H,5H-benzo(1,2-d),(4,5-d′)bistriazole)

Co2Cl2(btdd)(H2O)2 :

Co2Cl2(bis(1H-1,2,3-triazolo[4,5-b],[4′,5′-i])dibenzo [1,4]dioxin)(H2O)2

Co–DMOF–TM:

Co2(1,4-benzenedicarboxylate)2(1,4-diazabicyclo[2.2.2]octane)

CPL-1:

Cu2(2,3-pyrazinedicarboxylate)2(pyrazine)

CTAB-modified UiO-66:

Cetyltrimethylammonium bromide-modified UiO-66

Cu2Cl2(BBTA):

Cu2Cl2(1H,5H-benzo(1,2-d),(4,5-d′)bistriazole)

Cu2O@SiO2 :

Silica-coated copper oxide(I) nanocages

Cu2O@ZIF-8:

Cu2O loaded within ZIF-8

Cu-BDC(ted)0.5 :

Cu(1,4-benzenedicarboxylate)(triethylenediamine)0.5

CuBDC:

Copper 1,4-benzenedicarboxylate

CuBTC:

Copper benzene-1,3,5-tricarboxylate

CuBTC-P:

Non-thermal plasma-treated CuBTC

D-M-Fe:

Fe-based MOF (MIL-53 (Fe)) modified with D-sorbitol

Fe3O4@MOF-2:

Zn-based MOF-supported Fe3O4 nanoparticles

Fe3O4@SiO2 :

Magnetite nanoparticles coated with silica

Fe3O4@SiO2@Zn–TDPAT:

Zn-based MOF with TDPAT loaded with Fe3O4@SiO2

Fe3O4-COOH@ZIF-8/Ag/Ag3PO4 :

Fe3O4 with carboxylate and Ag/Ag3PO4 nanoparticles

Fe-BTC:

Iron benzene-1,3,5-tricarboxylate

Fe-M MOFs:

Bimetallic Fe-based MOF, M: transition metal

Fe-Zn BDC BMOF:

Iron zinc bimetallic MOF with BDC

HKUST-1:

Cu-based MOF using trimesic acid

HPU-5:

{[Co(5-(3,5-Di-pyridin-4-yl-[1,2,4]triazol-1-ylmethyl)-isophthalic acid)](CH3CN)0.5(H2O)5}n

HPU-6:

{[Mn2((5-(3,5-Di-pyridin-4-yl-[1,2,4]triazol-1-ylmethyl)-isophthalic acid))2(H2O)2](CH3OH)2(H2O)3(DMA)2}

IRMOF-3:

Zn4O(2-aminoterephthalate)3

KAUST-7:

Ni(NbOF5)(pyrazine)2·2H2O

KAUST-8:

[Ni(AlF5(OH2))(pyrazine)2·2H2O

LED:

Light-emitting diode

M.MIL-100(Fe)@ZnO NS:

Fe (III)-based MOF modified with ZnO nanospheres

MFM-520:

Zn2(4,4-bipyridyl-3,3′,5,5′-tetracarboxylate)

MFM-601:

Zr63-O)43-OH)4(OH)4(H2O)4(4,4′,4″,4′′′-(1,4-Phenylenebis(pyridine-4,2,6-triyl))tetrabenzoate)2

MIL(Fe)/Fe-SPC:

Fe-doped nanospongy porous biocarbon (SPC) composited with Fe-based MOF

MIL-100(Fe):

Fe3(H2O)3O[1,3,5-benzenetricarboxylate]2·nH2O

MIL-101(Cr):

Cr3F(H2O)2O[benzene dicarboxylate]3·nH2O

MIL-101(Fe):

Fe3O(H2O)2Cl(1,4-benzenedicarboxylate)3

MIL-101-NH2(Cr):

Cr3F(H2O)2O[2-aminoterephthalate]3·nH2O

MIL-125(Ti)@TiO2 :

Ti based MOF with encapsulated TiO2

MIL-125(Ti):

Ti8O8(OH)4(1,4-benzenedicarboxylate)6

MIL-47(V):

VIV(O)(1,4-benzenedicarboxylate)

MIL-53(Fe):

[Fe(OH).(benzene dicarboxylate).H2O]

Mn2Cl2(btdd)(H2O)2 :

Mn2Cl2(bis(1H-1,2,3-triazolo[4,5-b],[4′,5′-i])dibenzo[1,4]dioxin)(H2O)2

MOF 1:

3D-[Zn4(μ4-O)(6-oxo-6,7-dihydro-5H-dibenzo[d,f][1,3]-diazepine-3,9-dicarboxylate)3]

MOF 3:

[Zn2(6-oxo-6,7-dihydro-5H-dibenzo[d,f][1,3]-diazepine-3,9-dicarboxylate)2(4,4′-bipyridine)]

MOF 4:

[Zn2(6-oxo-6,7-dihydro-5H-dibenzo[d,f][1,3]-diazepine-3,9-dicarboxylate)2(1,2-bis(4-pyridyl)ethane)]

MOF:

Metal-organic framework

MOF-177:

Zn4O(4,4′,4′′-benzene-1,3,5-triyltribenzoate)2

MOF-5:

Zn4O(1,4-benzenedicarboxylate)3

MOF-74(Zn):

Zn2(2,5-dihydroxyterephthalate)

MOF-808:

Zr6O4(OH)4(benzene-1,3,5-tricarboxylate)2

NH2-MIL-125(Ti):

Ti8O8(OH)4(2-aminoterephthalate)6

Ni(bdc)(ted)0.5 :

Ni(1,4-benzenedicarboxylate)(triethylenediamine)0.5

Ni2Cl2(BBTA):

Ni2Cl2(1H,5H-benzo(1,2-d),(4,5-d′)bistriazole)

Ni2Cl2(btdd)(H2O)2 :

Ni2Cl2(bis(1H-1,2,3-triazolo[4,5-b],[4′,5′-i])dibenzo [1,4]dioxin)(H2O)2

Ni–DMOF–TM:

Ni2(1,4-benzenedicarboxylate)2(1,4-diazabicyclo[2.2.2]octane)

NU-1000:

Zr63-OH)8(OH)8(1,3,6,8-tetrakis(p-benzoic acid)pyrene)2

NU‐1401:

Zr63‐O)43‐OH)4(HCOO)4(OH)4(H2O)4(C30H10N2O12)

PCN-222(Zr):

Zr63-O)8(OH)8(tetrakis(4-carboxyphenyl)porphyrin)2

PMo12@UiO-66@H2SMIPs:

H3PMo12O40@UiO-66@ H2S molecular imprinted polymers

PW@HKUST-1H3PW12O40·nH2O:

Keggin-type polyoxometalate encapsulated in CuBTC MOF

TDPAT:

2,4,6-tris(3,5-dicarboxy phenylamino)-1,3,5-triazine

TiO2@NH2-MIL-88B(Fe):

Iron-based MOF with TiO2 grafted on the surface

TiO2@NH2-UiO-66:

Zr-based MOF with encapsulated TiO2

UiO-66/g-C3N4/Ag(15):

Zr-based MOF modified with graphite carbonitride and silver nanoparticles

UiO-66:

Zr6O4(OH)4(1,4-benzenedicarboxylate)6

UiO-66-NH2 :

Zr6O4(OH)4(2-aminobenzenedicarboxylate)6

UiO-67:

Zr6O4(OH)4(biphenyl-4,4’-dicarboxylate)6

UiO-68-TBTD:

Triazolobenzothiadiazole-Zr6O4(OH)4(p,p’-terphenyldicarboxylate)6

UMCM-313:

Zr63-O)43-OH)4(OH)4(H2O)4(2,5,8,11-tetrakis(4-carboxyphenyl)perylene)2

WO3/MIL-53(Fe):

Fe-based MOF combined with WO3

XY-M-Fe:

Fe-based MOF (MIL-53 (Fe)) modified with xylitol

ZIF-67:

Co(2-methylimidazole)2

ZIF-8:

Zn(2-methylimidazole)2

Zn(bdc)(ted)0.5 :

Zn(1,4-benzenedicarboxylate)(triethylenediamine)0.5

ZnBDC:

Zinc 1,4-benzenedicarboxylate

Zn–DMOF–TM:

Zn2(1,4-benzenedicarboxylate)2(1,4-diazabicyclo[2.2.2]octane)

Zn–TDPAT:

Zn-based MOF with TDPAT

α-Fe2O3@MIL-101(Cr)@TiO2 :

Cr-based MOF modified with α-Fe2O3 and TiO2-modified ZIF-8

α-Fe2O3@UiO-66:

UiO-66 MOF loaded with hematite nanoclusters

30UiO-66/CdIn2S4 :

Zr-based MOF combined with mixed metal sulfide (CdIn2S4)

1-NO3-OH·20H2O:

Cu9(OH)6Cl2(1-imidazol-1-yl-3-(1,2,4-triazol-4-yl)propane)6(bdc)3](NO3)2(OH)2

References

Download references

Acknowledgement

Authors are very grateful for the funds [Project#20200451-001] provided by the “Korea Institute of Civil Engineering and Building Technology” (KICT), Republic of Korea. The authors thank LNCAE (Laboratorio Nacional de Conversión y Almacenamiento de Energía) and Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAGUA) for technical support. Authors would like to thank Grayson Gould, Reliance Canada for language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang Soo Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, Y.C., Viltres, H., Gupta, N.K. et al. Transition metal-based metal–organic frameworks for environmental applications: a review. Environ Chem Lett 19, 1295–1334 (2021). https://doi.org/10.1007/s10311-020-01119-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-020-01119-1

Keywords

Navigation