Skip to main content
Log in

Self-adjointness and Compactness of Operators Related to Finite Measure Spaces

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

Let \((S, {\mathcal {B}}, m)\) be a finite measure space. In this paper we show that every bounded linear operator T from \(L^{p_{1}}(S)\) into \(L^{p_{2}}(S)\) is an S-operator (or a generalized pseudo-differential operator) with the symbol \(\sigma \) for some \( 1\le \alpha<p_{1}, p_{2}<\beta \le \infty \). We make use of this symbolic representation to study various functional analytical properties of T. First, we present necessary and sufficient conditions for a function to be the symbol of the adjoint of T in terms of the symbol of T. Then, we give necessary and sufficient conditions to guarantee that the bounded linear operators on \(L^p(S)\) posses a particular complex number (function) as its eigenvalue (eigenfunction). As an application, we obtain necessary and sufficient conditions on the symbols to ensure that corresponding bounded linear operators on \(L^{2}(S)\) are compact, self-adjoint, or compact self-adjoint. Lastly, we give a result concerning to factorization of compact operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Agranovich, M.S.: Spectral properties of elliptic pseudo-differential operators on a closed curve. Funct. Anal. Appl. 13, 279–281 (1971)

    Article  Google Scholar 

  2. Askey, R., Wainger, S.: Mean convergence of expansions in Laguerre and Hermite series. Am. J. Math. 87(3), 695–708 (1965)

    Article  MathSciNet  Google Scholar 

  3. Cardona, D.: Weak-type (1,1) bounds for a class of operators with discrete kernel. Rev. Integr. Temas Mater. 33(1), 51–60 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Cardona, D., Kumar, V.: Multilinear analysis for discrete and periodic pseudo-differential operators in \(L^p\) spaces. Rev. Integr. Temas Mater. 36(2), 151–164 (2018)

    Article  Google Scholar 

  5. Cardona, D., Kumar, V.: \(L^p\)-boundedness and \(L^p\)-nuclearity of multilinear pseudo-differential operators on \({\mathbb{Z}}^n\) and the torus \({\mathbb{T}}^n,\). J. Fourier Anal. Appl. 25(6), 2973–3017 (2019)

    Article  MathSciNet  Google Scholar 

  6. Cardona, D., Del Corral, C., Kumar, V.: Dixmier traces for discrete pseudo-differential operators. J. Pseudo-Differ. Oper. Appl. 11(2), 647–656 (2020)

    Article  MathSciNet  Google Scholar 

  7. Carey, A., Ellwood, D., Paycha, S., Rosenberg, S.: Motives, quantum field theory, and pseudo-differential operators. Clay Math. Proc. 12(1), 37–72 (2010)

    Google Scholar 

  8. Catană, V.: \({\mathbb{Z}}\)-operators related to a finite measure space. J. Pseudo Differ. Oper. Appl. 9(2), 173–188 (2018)

    Article  MathSciNet  Google Scholar 

  9. Catană, V.: \(S\)-operators related to a finite measure space. Appl. Anal. 99(2), 326–339 (2020)

    Article  MathSciNet  Google Scholar 

  10. Dasgupta, A., Kumar, V.: Hilbert–Schmidt and Trace class pseudo-differential operators on the abstract Heisenberg group. J. Math. Anal. Appl. 486(2), 123936 (2020)

    Article  MathSciNet  Google Scholar 

  11. Delgado, J.: \(L^p\) bounds for pseudo-differential operators on the torus, in pseudo-differential operators, generalized functions and asymptotics. Oper. Theory Adv. Appl. 231, 103–116 (2013)

    MATH  Google Scholar 

  12. Delgado, J., Ruzhansky, M.: \(L^p\)-bounds for pseudo-differential operators on compact Lie groups. J. Inst. Math. Jussieu 18(3), 531–559 (2019)

    Article  MathSciNet  Google Scholar 

  13. Ghaemi, M.B., Jamalpourbirgani, M.: \(L^p\)-boundedness, compactness of pseudo-differential operators on compact Lie groups. J. Pseudo-Differ. Oper. Appl. 8(1), 1–11 (2017)

    Article  MathSciNet  Google Scholar 

  14. Ghaemi, M.B., Jamalpourbirgani, M., Wong, M.W.: Characterization of nuclear pseudo-differential operators on \({\mathbb{S}}^1\) with applications to adjoints and products. J. Pseudo-Differ. Oper. Appl. 8(2), 191–201 (2017)

    Article  MathSciNet  Google Scholar 

  15. Ghaemi, M.B., Nabizadeh Morsalfard, E., Jamalpourbirgani, M.: A study on the adjoint of pseudo-differential operators on \({\mathbb{S}}^1\) and \({\mathbb{Z}}\). J. Pseudo-Differ. Oper. Appl 6(2), 197–203 (2015)

    Article  MathSciNet  Google Scholar 

  16. Ghaemi, M.B., Jamalpour Birgani, M., Nabizadeh Morsalfard, E.: A study on pseudo-differential operators on \({\mathbb{S}}^1\) and \({\mathbb{Z}}\). J. Pseudo-Differ. Oper. Appl 7(2), 237–247 (2016)

    Article  MathSciNet  Google Scholar 

  17. Hörmander, L.: The Analysis of Linear Partial Differential Operators. III. Springer, Berlin (1985)

    MATH  Google Scholar 

  18. Jamalpourbirgani, M., Wong, M.W.: Pseudo-differential analysis of bounded linear operators from \(L^{p_1}({\mathbb{S}}^1)\) into \(L^{p_1}({\mathbb{S}}^1)\). J. Pseudo-Differ. Oper. Appl. 11, 1005–1029 (2020)

    Article  MathSciNet  Google Scholar 

  19. Katznelson, Y.: Measure preserving systems [PDF].math.stanford.edu/katzneld. Accessed 2 Jan (2012)

  20. Kohn, J.J., Nirenberg, L.: An algebra of pseudo-differential operators. Comm. Pure Appl. Math. 18, 269–305 (1965)

    Article  MathSciNet  Google Scholar 

  21. Kumar, V.: Pseudo-differential operators on homogeneous spaces of compact and Hausdorff groups. Forum Math. 31(2), 275–282 (2019)

    Article  MathSciNet  Google Scholar 

  22. Kumar, V., Mondal, S.S.: Schatten Class and nuclear pseudo-differential operators on homogeneous spaces of compact groups (2019). arXiv:1911.10554

  23. Kumar, V., Mondal, S.S.: Nuclearity of operators related to finite measure spaces. J. Pseudo-Differ. Oper. Appl. 11(3), 1031–1058 (2020)

    Article  MathSciNet  Google Scholar 

  24. Kumar, V., Wong, M.W.: \(C^*\)-algebras, \(H^*\)-algebras and trace ideals of pseudo-differential operators on locally compact, Hausdorff and abelian groups. J. Pseudo-Differ. Oper. Appl. 10(2), 269–283 (2019)

    Article  MathSciNet  Google Scholar 

  25. Kumar, V., Wong, M.W.: Correction to: \(C^*\)-algebras, \(H^*\)-algebras and trace ideals of pseudo-differential operators on locally compact, Hausdorff and abelian groups. J. Pseudo-Differ. Oper. Appl. 11(3), 1445–1446 (2020)

    Article  MathSciNet  Google Scholar 

  26. Limaye, B.V.: Functional Analysis, 2nd edn. New Age International Ltd, New Delhi (1996)

    MATH  Google Scholar 

  27. Molahajloo, S., Wong, M.W.: Pseudo-differential Operators on \({\mathbb{S}}^1\). In: Rodino, L., Wong, M.W. (eds.) New Developments in Pseudo-differential Operators, Operator Theory: Advances and Applications, vol. 189, pp. 297–306. Birkhäuser, Basel (2008)

    Chapter  Google Scholar 

  28. Molahajloo, S.: A characterization of compact pseudo-differential operators on \({\mathbb{S}}^1\). In: Rodino, L., Wong, M., Zhu, H. (eds.) Pseudo-differential Operators: Analysis, Applications and Computations, Operator Theory: Advances and Applications, vol. 213, pp. 25–31. Birkhäuser, Basel (2011)

    MATH  Google Scholar 

  29. Molahajloo, S., Pirhayati, M.: Traces of pseudo-differential operators on compact and Hausdorff groups. J. Pseudo-Differ. Oper. Appl. 4(3), 361–369 (2013)

    Article  MathSciNet  Google Scholar 

  30. Pirhayati, M.: Spectral theory of pseudo-differential operators on \({\mathbb{S}}^1\). In: Rodino, L., Wong, M., Zhu, H. (eds.) Pseudo-differential Operators: Analysis, Applications and Computations, Operator Theory: Advances and Applications, vol. 213, pp. 15–25. Birkhäuser, Basel (2011)

    MATH  Google Scholar 

  31. Pollard, H.: The mean convergence of orthogonal series. I. Trans. Am. Math. Soc. 62(3), 387–403 (1947)

    Article  MathSciNet  Google Scholar 

  32. Ruzhansky, M., Turunen, V.: On the Fourier analysis of operators on the torus. In: Toft J. (eds) Modern Trends in Pseudo-differential Operators, Operator Theory: Advances and Applications, Vol. 172, pp. 87–105. Birkhäuser, Basel (2007)

  33. Ruzhansky, M., Turunen, V.: Quantization of pseudo-differential operators on the torus. J. Fourier Anal. Appl. 16(6), 943–982 (2010)

    Article  MathSciNet  Google Scholar 

  34. Ruzhansky, M., Turunen, V.: Pseudo-differential Operators and Symmetries: Background Analysis and Advanced Topics. Birkhäuser, Basel (2010)

    Book  Google Scholar 

  35. Ruzhansky, M., Turunen, V.: Global quantization of pseudo-differential operators on compact Lie groups, \(SU(2),\)\(3\)-sphere, and homogeneous spaces. Int. Math. Res. Not. 11, 2439–2496 (2013)

    Article  MathSciNet  Google Scholar 

  36. Turunen, V., Vainikko, G.: On symbol analysis of periodic pseudo-differential operators. Z. Anal. Anwend. 17(1), 9–22 (1998)

    Article  Google Scholar 

  37. Wong, M.W.: Discrete Fourier Analysis. Birkhäuser, Basel (2011)

    Book  Google Scholar 

  38. Wong, M.W.: An Introduction to Pseudo-differential Operators, 3rd edn. World Scientific, Singapore (2014)

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for his/her valuable suggestions. Shyam Swarup Mondal gratefully acknowledges the support provided by IIT Guwahati, Government of India. He also thanks his supervisor Jitendriya Swain for his encouragement. Vishvesh Kumar is supported by FWO Odysseus 1 Grant G.0H94.18N: Analysis and Partial Differential Equations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam Swarup Mondal.

Additional information

Communicated by H. Turgay Kaptanoglu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Harmonic Analysis and Operator Theory” edited by H. Turgay Kaptanoglu, Aurelian Gheondea and Serap Oztop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, S.S., Kumar, V. Self-adjointness and Compactness of Operators Related to Finite Measure Spaces. Complex Anal. Oper. Theory 15, 22 (2021). https://doi.org/10.1007/s11785-020-01067-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-020-01067-2

Keywords

Mathematics Subject Classification

Navigation