Skip to main content
Log in

Femoral Shape in Procyonids (Carnivora, Procyonidae): Morphofunctional Implications, Size and Phylogenetic Signal

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Procyonids occur throughout the Americas and include ecologically diverse forms. They occupy diverse habitats and display a variety of locomotor modes and substrate preferences. Because of this ecological diversity, procyonids represent an interesting model for morphofunctional analysis of their postcranial skeleton. This work is an analysis of shape variation of the femur, a highly informative element of the appendicular skeleton of mammals, whose morphology reflects diverse locomotor abilities and is also related to body weight support and phylogeny. In this work, two femoral aspects were analyzed in all living procyonid genera within a wide comparative sample of carnivorans using 2D geometric morphometric techniques. Morphofunctional implications of the shape variations detected and relationships with locomotor modes and substrate preferences are discussed, as well as influence of body size and phylogeny. Analysis of the caudo-proximal shape indicated that procyonids present an intermediate morphology among carnivorans, but with some correlation with body size. In the analysis of distal femoral shape, procyonids were more separated among each other along Principal Component 1 and located on one extreme of the morphospace, while shape variation did not show association with body size. Even though the femoral shapes analyzed in the carnivoran sample showed significant phylogenetic signal, the latter was relatively low. In procyonids, the pattern of morphological variation of both femoral aspects does not agree with the phylogenetic structure. Therefore, most morphological variation found among procyonids can be related to known ecological characteristics of their locomotion or substrate preference and also partly explained by body size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahrens HE (2012) Craniodental characters and the relationships of Procyonidae (Mammalia: Carnivora). Zool J Linn Soc 164:669–713

    Google Scholar 

  • Almécija S, Tallman M, Alba DM, Pina M, Moyà-Solà S, Jungers WL (2013) The femur of Orrorin tugenensis exhibits morphometric affinities with both Miocene apes and later hominins. Nat Commun 4:2888

    PubMed  Google Scholar 

  • Álvarez A, Ercoli MD, Prevosti FJ (2013) Locomotion in some small to medium-sized mammals: a geometric morphometric analysis of the penultimate lumbar vertebra, pelvis and hindlimbs. Zoology 116:356–371

    PubMed  Google Scholar 

  • Anyonge W (1993) Body mass in large extant and extinct carnivores. J Zool 231:339–350

    Google Scholar 

  • Argot C (2002) Functional adaptive analysis of the hindlimb anatomy of extant marsupials and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J Morphol 253:76–108

    PubMed  Google Scholar 

  • Baskin JA (2004) Bassariscus and Probassariscus (Mammalia, Carnivora, Procyonidae) from the early Barstovian (middle Miocene). J Vertebr Paleontol 24:709–720

    Google Scholar 

  • Bonnan MF, Farlow JO, Masters SL (2008) Using linear and geometric morphometrics to detect intraspecific variability and sexual dimorphism in femoral shape in Alligator mississippiensis and its implications for sexing fossil archosaurs. J Vertebr Paleontol 28:422–431

    Google Scholar 

  • Bookstein FL (1997) Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Med Image Anal 1:225–243

    CAS  PubMed  Google Scholar 

  • Botton-Divet L, Cornette R, Fabre AC, Herrel A, Houssaye A (2016) Morphological analysis of long bones in semi-aquatic mustelids and their terrestrial relatives. Integr Comp Biol 56:1298–1309

    PubMed  Google Scholar 

  • Botton-Divet L, Houssaye A, Herrel A, Fabre AC, Cornette R (2018) Swimmers, diggers, climbers and more, a study of integration across the mustelids’ locomotor apparatus (Carnivora: Mustelidae). Evol Biol 45:182–195

    Google Scholar 

  • Candela AM, Picasso MB (2008) Functional anatomy of the limbs of Erethizontidae (Rodentia, Caviomorpha): indicators of locomotor behavior in Miocene porcupines. J Morphol 269:552–593

    PubMed  Google Scholar 

  • Canevari M, Vaccaro O (2007) Guía de mamíferos del sur de América del Sur. 1st ed, editorial L.O.L.A., Buenos Aires

  • Castillo DF, Luengos-Vidal EM, Caruso NC, Lucherini M, Casanave EB (2013) Denning ecology of Conepatus chinga (Carnivora: Mephitidae) in a grassland relict of central Argentina. Mastozool Neotrop 20:373–379

    Google Scholar 

  • Christiansen P, Harris JM (2005) Body size of Smilodon (Mammalia: Felidae). J Morphol 266:369–384

    PubMed  Google Scholar 

  • Corlett RT, Primack RB (2011) Tropical Rain Forests: An Ecological and Biogeographical Comparison. Wiley Blackwell, West Sussex

    Google Scholar 

  • Decker DM, Wozencraft WC (1991) Phylogenetic analysis of recent procyonid genera. J Mammal 72:42–55

    Google Scholar 

  • Egi N (2001) Body mass estimates in extinct mammals from limb bone dimensions: the case of North American hyaenodontids. Palaeontology 44:497–528

    Google Scholar 

  • Ercoli MD, Youlatos D (2016) Integrating locomotion, postures and morphology: the case of the tayra, Eira barbara (Carnivora, Mustelidae). Mammal Biol 81:464–476.

    Google Scholar 

  • Evans HE, De Lahunta A (2013) Miller's Anatomy of the Dog. 4th ed. Elsevier Saunders, St. Louis

    Google Scholar 

  • Fabre AC, Cornette R, Goswami A, Peigné S (2015a) Do constraints associated with the locomotor habitat drive the evolution of forelimb shape? A case study in musteloid carnivorans. J Anat 226:596–610

    PubMed  PubMed Central  Google Scholar 

  • Fabre AC, Salesa MJ, Cornette R, Antón M, Morales J, Peigné S (2015b) Quantitative inferences on the locomotor behaviour of extinct species applied to Simocyon batalleri (Ailuridae, late Miocene, Spain). Sci Nat 102:30

    Google Scholar 

  • Figueirido B, Pérez-Claros JA, Hunt RM Jr, Palmqvist P (2011) Body mass estimation in amphicyonid carnivoran mammals: a multiple regression approach from the skull and skeleton. Acta Palaeontol Pol 56:225–247

  • Fisher RE, Adrian B, Elrod C, Hicks M (2008) The phylogeny of the red panda (Ailurus fulgens): evidence from the hindlimb. J Anat 213:607–628

    PubMed  PubMed Central  Google Scholar 

  • Flores DA, Díaz MM (2009) Postcranial skeleton of Glironia venusta (Didelphimorphia, Didelphidae, Caluromyinae): description and functional morphology. Zoosyst Evol 85:311–339

    Google Scholar 

  • Flynn JJ, Finarelli JA, Zehr S, Hsu J, Nedbal MA (2005) Molecular phylogeny of the Carnivora (Mammalia): assessing the impact of increased sampling on resolving enigmatic relationships. Syst Biol 54:317–337

    PubMed  Google Scholar 

  • Ford LS, Hoffmann RS (1988) Potos flavus. Mammal Species 321:1–9

    Google Scholar 

  • Fulton TL, Strobeck C (2007) Novel phylogeny of the raccoon family (Procyonidae: Carnivora) based on nuclear and mitochondrial DNA evidence. Mol Phylogenet Evol 43:1171–1177

    CAS  PubMed  Google Scholar 

  • Gebo DL, Sargis EJ (1994) Terrestrial adaptations in the postcranial skeletons of guenons. Am J Phys Anthropol 93:341–371

    CAS  PubMed  Google Scholar 

  • Gompper ME, Decker DM (1998) Nasua nasua. Mammal Species 580:1–9

    Google Scholar 

  • Goodall C (1991) Procrustes methods in the statistical analysis of shape. J Roy Stat Soc B 53:285–339

    Google Scholar 

  • Harmon EH (2007) The shape of the hominoid proximal femur: a geometric morphometric analysis. J Anat 210:170–185

    PubMed  PubMed Central  Google Scholar 

  • Helgen KM, Pinto CM, Kays R, Helgen LE, Tsuchiya MT, Quinn A, Wilson DE (2013) Taxonomic revision of the olingos (Bassaricyon), with description of a new species, the olinguito. ZooKeys 324:1–83

    Google Scholar 

  • Hildebrand M (1988) Analysis of Vertebrate Structure. John Wiley & Sons, New York

    Google Scholar 

  • Jenkins FA Jr, Camazine SM (1977) Hip structure and locomotion in ambulatory and cursorial carnivores. J Zool 181:351–370

    Google Scholar 

  • Jenkins FA Jr, McClearn D (1984) Mechanisms of hind foot reversal in climbing mammals. J Morphol 182:197–219

    PubMed  Google Scholar 

  • Kasper CB, Soares JB, Freitas TR (2012) Differential patterns of home-range, net displacement and resting sites use of Conepatus chinga in southern Brazil. Z Saugetierkd 77:358–362

    Google Scholar 

  • Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357

    Google Scholar 

  • Klingenberg CP, Gidaszewski NA (2010) Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Syst Biol 59:245–261

    CAS  PubMed  Google Scholar 

  • Koepfli KP, Gompper ME, Eizirik E, Ho CC, Linden L, Maldonado JE, Wayne RK (2007) Phylogeny of the Procyonidae (Mammalia: Carnivora): molecules, morphology and the Great American Interchange. Mol Phylogenet Evol 43:1076–1095

    CAS  PubMed  Google Scholar 

  • Larivière S (2004) Raccons and relatives (Procyonidae). In: Kleiman DG, Geist V, McDade MC (eds) Grzimek’s Animal Life Encyclopedia. Vol 14. Mammals III. 2nd ed. Gale, Detroit, pp 309–317

  • Laurin M (2004) The evolution of body size, Cope’s rule and the origin of amniotes. Syst Biol 53:594–622

    PubMed  Google Scholar 

  • Lee DV, Bertram JE, Todhunter RJ (1999) Acceleration and balance in trotting dogs. J Exp Biol 202:3565–3573

    CAS  PubMed  Google Scholar 

  • Lemelin P, Cartmill M (2010) The effect of substrate size on the locomotion and gait patterns of the kinkajou (Potos flavus). J Exp Zool Part A 313:157–168

    Google Scholar 

  • Lewis ME (2008) The femur of extinct bunodont otters in Africa (Carnivora, Mustelidae, Lutrinae). CR Palevol 7:607–627

    Google Scholar 

  • Liu M, Zack SP, Lucas L, Allen D, Fisher RE (2015) Hindlimb myology of the ringtail (Bassariscus astutus) and the myology of hind foot reversal. J Mammal 97:211–233

    Google Scholar 

  • Lotze J, Anderson S (1979) Procyon lotor. Mammal Species 119:1–8

    Google Scholar 

  • Maddison WP, Maddison DR (2015) Mesquite 3.04: a modular system for evolutionary analysis. Version 2.75

  • Martín-Serra A, Figueirido B, Palmqvist P (2014). A three-dimensional analysis of the morphological evolution and locomotor behaviour of the carnivoran hind limb. BMC Evol Biol 14:129

    PubMed  PubMed Central  Google Scholar 

  • McClearn D (1992) Locomotion, posture, and feeding behavior of kinkajous, coatis, and raccoons. J Mammal 73:245–261

    Google Scholar 

  • Morgan CC, Álvarez A (2013) The humerus of South American caviomorph rodents: shape, function and size in a phylogenetic context. J Zool 290:107–116

    Google Scholar 

  • Nowak RM (2005) Walker’s Carnivores of the World. Johns Hopkins University Press, Baltimore and London

    Google Scholar 

  • Nyakatura K, Bininda-Emonds OR (2012) Updating the evolutionary history of Carnivora (Mammalia): a new species-level supertree complete with divergence time estimates. BMC Biol 10:12 doi: https://doi.org/10.1186/1741-7007-10-12

    Article  PubMed  PubMed Central  Google Scholar 

  • Pasitschniak-Arts M, Larivière S (1995) Gulo gulo. Mammal Species 499:1–10

    Google Scholar 

  • Poglayen-Neuwall I, Toweill DE (1988) Bassariscus astutus. Mammal Species 327:1–8

    Google Scholar 

  • Polly PD (2007) Limbs in mammalian evolution. In: Hall B (ed) Fins into Limbs: Evolution, Development and Transformation. University of Chicago Press, Chicago and London, pp 245–268

    Google Scholar 

  • Presley SJ (2000) Eira barbara. Mammal Species 636:1–6

    Google Scholar 

  • Quaife LR (1978) The form and function of the North American badger (Taxidea taxus) in relation to its fossorial way of life. Master's thesis, University of Calgary, Calgary

    Google Scholar 

  • Radinsky LB (1987) The Evolution of Vertebrate Design. University of Chicago Press, Chicago and London

  • Rohlf FJ (1999) Shape statistics: Procrustes superimpositions and tangent spaces. J Classif 16:197–223

    Google Scholar 

  • Rohlf FJ (2015) The tps series of software. Hystrix, Ital J Mammal 26:9–12

    Google Scholar 

  • Salton JA, Sargis EJ (2008) Evolutionary morphology of the Tenrecoidea (Mammalia) forelimb skeleton. In: Sargis EJ, Dagosto M (eds) Mammalian Evolutionary Morphology: A Tribute to Frederick S. Szalay. Springer, Dordrecht, pp 51–71

    Google Scholar 

  • Samuels JX, Van Valkenburgh B (2008) Skeletal indicators of locomotor adaptations in living and extinct rodents. J Morphol 269:1387–1411

    PubMed  Google Scholar 

  • Samuels JX, Meachen JA, Sakai SA (2013) Postcranial morphology and the locomotor habits of living and extinct carnivorans. J Morphol 274:121–146

    PubMed  Google Scholar 

  • Sargis EJ (2002) Functional morphology of the hindlimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications. J Morphol 254:149–185

    PubMed  Google Scholar 

  • Sato JJ, Wolsan M, Prevosti FJ, D’Elia GD, Begg C, Begg K, Hosoda T, Campbell KL, Suzuki H (2012) Evolutionary and biogeographic history of weasel-like carnivorans (Musteloidea). Mol Phylogenet Evol 63:745–757

    PubMed  Google Scholar 

  • Smith JM, Savage RJ (1956) Some locomotory adaptations in mammals. Zool J Linn Soc 42:603–622

    Google Scholar 

  • Soibelzon L, Tarantini V (2009) Estimación de la masa corporal de las especies de osos fósiles y actuales (Ursidae, Tremarctinae) de América del Sur. Rev MACN nueva serie 11:243–254

    Google Scholar 

  • Tarquini J (2018) El esqueleto poscraneano de los Procyonidae (Mammalia, Carnivora) vivientes y extintos de América del Sur: análisis morfo-funcional y ecomorfológico. Dissertation, Universidad Nacional de La Plata, La Plata

    Google Scholar 

  • Tarquini J, Morgan CC, Toledo N, Soibelzon LH (2019) Comparative osteology and functional morphology of the forelimb of Cyonasua (Mammalia, Procyonidae), the first South American carnivoran. J Morphol 280:446–470

    PubMed  Google Scholar 

  • Tarquini J, Toledo N, Morgan CC, Soibelzon LH (2017) The forelimb of †Cyonasua sp. (Procyonidae, Carnivora): ecomorphological interpretation in the context of carnivorans. Earth Env Sci Trans R So 106:325–335

    Google Scholar 

  • Tarquini J, Toledo N, Soibelzon LH, Morgan CC (2018) Body mass estimation for †Cyonasua (Procyonidae, Carnivora) and related taxa based on postcranial skeleton. Hist Biol 30:496–506

    Google Scholar 

  • Taylor ME (1974) The functional anatomy of the forelimb of some African Viverridae (Carnivora). J Morphol 143:307–335

    CAS  PubMed  Google Scholar 

  • Taylor ME (1976) The functional anatomy of the hindlimb of some African Viverridae (Carnivora). J Morphol 148:227–253

    CAS  PubMed  Google Scholar 

  • Taylor ME (1989) Locomotor adaptations by carnivores. In: Gittleman JL (ed) Carnivore Behavior, Ecology, and Evolution. Springer, Boston, Cornell University Press, Ithaca, pp 382–409

    Google Scholar 

  • Trapp GR (1972) Some anatomical and behavioral adaptations of ringtails, Bassariscus astutus. J Mammal 53:549–557

    Google Scholar 

  • Van Valkenburgh B (1987) Skeletal indicators of locomotor behavior in living and extinct carnivores. J Vertebr Paleontol 7:162–182

    Google Scholar 

  • Viscosi V, Cardini A (2011) Leaf morphology, taxonomy and geometric morphometrics: a simplified protocol for beginners. PLoS One 6:e25630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiens JJ, Chippindale PT, Hillis DM (2003) When are phylogenetic analyses misled by convergence? A case study in Texas cave salamanders. Syst Biol 52:501–514

    PubMed  Google Scholar 

  • Wilson DE, Mittermeier RA (eds) (2009) Handbook of the Mammals of the World. Vol.1: Carnivora. Lynx Edicions, Barcelona

Download references

Acknowledgements

I would like to thank AI Olivares (MLP), S Lucero and P Teta (MACN), M González (MNHN Uruguay), S Riverón (Facultad de Ciencias, Udelar), E Westwig (AMNH), DP Lunde and J Ososky (Smithsonian NMNH), for kindly providing access to the collections under their care. I am grateful to the editors for inviting me to participate on this Special Issue developed within the framework of the Symposium: “El paradigma de correlación forma-función en mastozoología: un tributo a Leonard Radinsky (1937–1985),” which took place during the XXXI Jornadas Argentinas de Mastozoología, in La Rioja, Argentina, 25 October, 2018. I am very grateful also to CC Morgan for helpful comments and suggestions while developing this project. I thank the anonymous reviewers for their comments and suggestions to improve the manuscript. This work was supported by CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina), ANPCyT (Agencia Nacional de Promoción Científica y Tecnológica, Argentina, PICT-2016-2698), and a grant from Theodore Roosevelt Memorial Fund (AMNH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Tarquini.

Electronic supplementary material

ESM 1

(PDF 221 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarquini, J. Femoral Shape in Procyonids (Carnivora, Procyonidae): Morphofunctional Implications, Size and Phylogenetic Signal. J Mammal Evol 28, 159–171 (2021). https://doi.org/10.1007/s10914-019-09491-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-019-09491-8

Keywords

Navigation