Skip to main content
Log in

An interval framework for uncertain frequency response of multi-cracked beams with application to vibration reduction via tuned mass dampers

  • Modelling and analysis of mechanical systems dynamics
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The paper addresses the frequency response of beams in presence of open cracks with interval parameters. On adopting the standard Euler–Bernoulli beam theory, every crack is modelled as a linearly-elastic rotational spring whose stiffness and position are treated as uncertain-but-bounded parameters. A two-step method is proposed to calculate the bounds of all response variables. First, the sensitivity functions of the response are calculated as every uncertain parameter varies within the respective interval. Next, the bounds of the response are computed by either a sensitivity-based method or a global optimization technique, the former if the response is monotonic with respect to all uncertain parameters and the latter if the response is non-monotonic with respect to even one parameter only. The method relies on analytical forms for all response variables and the associated sensitivity functions. The applications focus on the frequency response of multi-cracked beams equipped with tuned mass dampers, showing potential and accuracy of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Cacciola P, Muscolino G (2002) Dynamic response of a rectangular beam with a known non-propagating crack of certain or uncertain depth. Comput Struct 80(27):2387–2396. https://doi.org/10.1016/S0045-7949(02)00255-9

    Article  Google Scholar 

  2. Muscolino G, Santoro R (2019) Dynamics of multiple cracked prismatic beams with uncertain-but-bounded depths under deterministic and stochastic loads. J Sound Vib 443:717–731. https://doi.org/10.1016/j.jsv.2018.11.029

    Article  Google Scholar 

  3. Santoro R, Muscolino G (2019) Dynamics of beams with uncertain crack depth: stochastic versus interval analysis. Meccanica 54(9):1433–1449. https://doi.org/10.1007/s11012-019-01024-0

    Article  MathSciNet  Google Scholar 

  4. Soize C (2013) Stochastic modeling of uncertainties in computational structural dynamics-recent theoretical advances. J Sound Vib 332(10):2379–2395. https://doi.org/10.1016/j.jsv.2011.10.010

    Article  Google Scholar 

  5. Soize C, Capiez-Lernout E, Durand J-F, Fernandez C, Gagliardini L (2008) Probabilistic model identification of uncertainties in computational models for dynamical systems and experimental validation. Comput Methods Appl Mech Eng 198(1):150–163. https://doi.org/10.1016/j.cma.2008.04.007

    Article  MATH  Google Scholar 

  6. Beck JL, Katafygiotis LS (1998) Updating models and their uncertainties. I: Bayesian statistical framework. J Eng Mech 124(4):455–461. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(455)

    Article  Google Scholar 

  7. Spall JC (2003) Introduction to stochastic search and optimization. Wiley, Hoboken

    Book  Google Scholar 

  8. Soize C (2001) Maximum entropy approach for modeling random uncertainties in transient elastodynamics. J Acoust Soc Am 109(5):1979–1996. https://doi.org/10.1121/1.1360716

    Article  Google Scholar 

  9. Soize C (2005) Random matrix theory for modeling uncertainties in computational mechanics. Comput Methods Appl Mech Eng 194(12–16):1333–1366. https://doi.org/10.1016/j.cma.2004.06.038

    Article  MathSciNet  MATH  Google Scholar 

  10. Soize C (2008) Construction of probability distributions in high dimension using the maximum entropy principle: applications to stochastic processes, random fields and random matrices. Int J Numer Methods Eng 76(10):1583–1611. https://doi.org/10.1002/nme.2385

    Article  MathSciNet  MATH  Google Scholar 

  11. Soize C, Ghanem R (2004) Physical systems with random uncertainties: chaos representation with arbitrary probability measure. SIAM J Sci Comput 26(2):395–410. https://doi.org/10.1137/S1064827503424505

    Article  MathSciNet  MATH  Google Scholar 

  12. Soize C (2009) Generalized probabilistic approach of uncertainties in computational dynamics using random matrices and polynomial chaos decompositions. Int J Numer Methods Eng 81(8):939–970. https://doi.org/10.1002/nme.2712

    Article  MathSciNet  MATH  Google Scholar 

  13. Carlin BP, Louis TA (2009) Bayesian methods for data analysis, 3rd edn. CRC Press, Boca Raton

    MATH  Google Scholar 

  14. Savvas D, Papaioannou I, Stefanou G (2020) Bayesian identification and model comparison for random property fields derived from material microstructure. Comput Methods Appl Mech Eng 365:113026. https://doi.org/10.1016/j.cma.2020.113026

    Article  MathSciNet  MATH  Google Scholar 

  15. Soize C (2011) A computational inverse method for identification of non-Gaussian random fields using the Bayesian approach in very high dimension. Comput Methods Appl Mech Eng 200(45–46):3083–3099. https://doi.org/10.1016/j.cma.2011.07.005

    Article  MathSciNet  MATH  Google Scholar 

  16. Ghanem R, Spanos PD (1991) Stochastic finite elements: a spectral approach. Springer-Verlag, Berlin

    Book  Google Scholar 

  17. Stefanou G, Papadrakakis M (2007) Assessment of spectral representation and Karhunen–Loève expansion methods for the simulation of Gaussian stochastic fields. Comput Methods Appl Mech Eng 196(21–24):2465–2477. https://doi.org/10.1016/j.cma.2007.01.009

    Article  MATH  Google Scholar 

  18. Stefanou G (2009) The stochastic finite element method: past, present and future. Comput Methods Appl Mech Eng 198(9–12):1031–1051. https://doi.org/10.1016/j.cma.2008.11.007

    Article  MATH  Google Scholar 

  19. Stefanou G, Savvas D, Papadrakakis M (2017) Stochastic finite element analysis of composite structures based on mesoscale random fields of material properties. Comput Methods Appl Mech Eng 326:319–337. https://doi.org/10.1016/j.cma.2017.08.002

    Article  MathSciNet  MATH  Google Scholar 

  20. Soize C (2015) Polynomial Chaos expansion of a multimodal random vector SIAM/ASA. J Uncertain Quantif 3(1):34–60. https://doi.org/10.1137/140968495

    Article  MathSciNet  MATH  Google Scholar 

  21. Kleiber M, Hien TD (1992) The stochastic finite element method (basic perturbation technique and computer implementation) Chichester. Wiley, West Sussex

    MATH  Google Scholar 

  22. Kamiński M (2006) On generalized stochastic perturbation-based finite elements. Commun Numer Methods Eng 22(1):23–31. https://doi.org/10.1002/cnm.795

    Article  MathSciNet  MATH  Google Scholar 

  23. Kamiński M (2010) Generalized stochastic perturbation technique in engineering computations. Math Comput Model 51(3–4):272–285. https://doi.org/10.1016/j.mcm.2009.08.014

    Article  MathSciNet  MATH  Google Scholar 

  24. Kamiński M (2010) Potential problems with random parameters by the generalized perturbation-based stochastic finite element method. Comput Struct 88(7–8):437–445. https://doi.org/10.1016/j.compstruc.2009.12.005

    Article  MathSciNet  Google Scholar 

  25. Papadrakakis M, Papadopoulos V (1996) Robust and efficient methods for stochastic finite element analysis using Monte Carlo simulation. Comput Methods Appl Mech Eng 134:325–340. https://doi.org/10.1016/0045-7825(95)00978-7

    Article  MathSciNet  MATH  Google Scholar 

  26. Elishakoff I, Ohsaki M (2010) Optimization and anti-optimization of structures under uncertainty. Imperial College Press, London

    Book  Google Scholar 

  27. Moore RE (1966) Interval analysis. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  28. Hansen ER (1975) A generalized interval arithmetic. In: Nickel K. (eds) Interval mathematics. Lecture notes in computer science, 29: 7–18 Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-07170-9_2

  29. Stolfi J, De Figueiredo LH (2003) An introduction to affine arithmetic. TEMA Tend Mat Apl Comput 4:297–312

    MathSciNet  MATH  Google Scholar 

  30. Elishakoff I, Miglis Y (2012) Overestimation-free computational version of interval analysis. Int J Comput Methods Eng Sci Mech 13(5):319–328. https://doi.org/10.1080/15502287.2012.683134

    Article  MathSciNet  Google Scholar 

  31. Muscolino G, Sofi A (2012) Stochastic response of structures with uncertain-but-bounded parameters via improved interval analysis. Probab Eng Mech 28:152–163. https://doi.org/10.1016/j.probengmech.2011.08.011

    Article  Google Scholar 

  32. Muhanna RL, Mullen RL (2001) Uncertainty in mechanics: problems-interval-based approach. J Eng Mech. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:6(557)

    Article  Google Scholar 

  33. Moens D, Vandepitte D (2005) A survey of non-probabilistic uncertainty treatment in finite element analysis. Comput Methods Appl Mech Eng 194:1527–1555. https://doi.org/10.1016/j.cma.2004.03.019

    Article  MATH  Google Scholar 

  34. Chen SH, Lian HD, Yang XW (2002) Dynamic response analysis for structures with interval parameters. Struct Eng Mech 13:299–312. https://doi.org/10.12989/sem.2002.13.3.299

    Article  Google Scholar 

  35. Qiu ZP, Wang XJ (2003) Comparison of dynamic response of structures with uncertain-but-bounded parameters using non probabilistic interval analysis method and probabilistic approach. Int J Solids Struct 40(20):5423–5439. https://doi.org/10.1016/S0020-7683(03)00282-8

    Article  MATH  Google Scholar 

  36. Qiu Z, Wang XJ (2005) Parameter perturbation method for dynamic response of structures with uncertain-but-bounded parameters based on interval analysis. Int J Solids Struct 42(18–19):4958–4970. https://doi.org/10.1016/j.ijsolstr.2005.02.023

    Article  MATH  Google Scholar 

  37. Qiu ZP, Ma L, Wang XJ (2009) Non-probabilistic interval analysis method for dynamic response analysis of nonlinear systems with uncertainty. J Sound Vib 319:531–540. https://doi.org/10.1016/j.jsv.2008.06.006

    Article  Google Scholar 

  38. Wu J, Zhang Y, Chen L, Luo Z (2013) A Chebyshev interval method for nonlinear dynamic systems under uncertainty. Appl Math Model 37:4578–4591. https://doi.org/10.1016/j.apm.2012.09.073

    Article  MathSciNet  MATH  Google Scholar 

  39. Xu M, Du J, Chen J, Wang C, Li Y (2018) An iterative dimension-wise approach to the structural analysis with interval uncertainties. Int J Comput Methods 15(06):1850044. https://doi.org/10.1142/S0219876218500445

    Article  MathSciNet  MATH  Google Scholar 

  40. Muscolino G, Sofi A (2013) Bounds for the stationary stochastic response of truss structures with uncertain-but-bounded parameters. Mech Syst Signal Process 37:163–181. https://doi.org/10.1016/j.ymssp.2012.06.016

    Article  Google Scholar 

  41. Muscolino G, Santoro R, Sofi A (2014) Explicit frequency response functions of discretized structures with uncertain parameters. Comput Struct 133:64–78. https://doi.org/10.1016/j.compstruc.2013.11.007

    Article  Google Scholar 

  42. Muscolino G, Santoro R, Sofi A (2014) Explicit sensitivities of the response of discretized structures under stationary random processes. Probab Eng Mech 35:82–95. https://doi.org/10.1016/j.probengmech.2013.09.006

    Article  Google Scholar 

  43. Dong W, Shah HC (1987) Vertex method for computing functions of fuzzy variables. Fuzzy Sets Syst 24(1):65–78. https://doi.org/10.1016/0165-0114(87)90114-X

    Article  MathSciNet  MATH  Google Scholar 

  44. Hanss M (2003) The extended transformation method for the simulation and analysis of fuzzy-parameterized models. Int J Uncertain Fuzziness Knowl Based Syst 11(6):711–727. https://doi.org/10.1142/S0218488503002491

    Article  MathSciNet  MATH  Google Scholar 

  45. Muscolino G, Santoro R (2017) Explicit frequency response function of beams with crack of uncertain depth. Proced Eng 199:1128–1133. https://doi.org/10.1016/j.proeng.2017.09.239

    Article  Google Scholar 

  46. Cannizzaro F, Impollonia N, Caddemi S, Caliò I (2020) Explicit dynamic response of damaged beams with application to uncertain and identification problems. J Sound Vib 487:115608. https://doi.org/10.1016/j.jsv.2020.115608

    Article  Google Scholar 

  47. Santoro R, Failla G, Muscolino G (2020) Interval static analysis of multi-cracked beams with uncertain size and position of cracks. Appl Math Model 86:92–114. https://doi.org/10.1016/j.apm.2020.03.049

    Article  MathSciNet  Google Scholar 

  48. Rizos PF, Aspragathos N, Dimarogonas AD (1990) Identification of crack location and magnitude in a cantilever beam from the vibration modes. J Sound Vib 138(3):381–388. https://doi.org/10.1016/0022-460X(90)90593-O

    Article  Google Scholar 

  49. Ostachowicz WM, Krawczuk M (1991) Analysis of the effect of cracks on the natural frequencies of a cantilever beam. J Sound Vib 150(2):191–201. https://doi.org/10.1016/0022-460X(91)90615-Q

    Article  Google Scholar 

  50. Chondros TG, Dimarogonas AD, Yao J (1998) A continuous cracked beam vibration theory. J Sound Vib 215(1):17–34. https://doi.org/10.1006/jsvi.1998.1640

    Article  MATH  Google Scholar 

  51. Fernandez-Saez J, Rubio L, Navarro C (1999) Approximate calculation of the fundamental fre-quency for bending vibrations of cracked beams. J Sound Vib 225(2):345–352. https://doi.org/10.1006/jsvi.1999.2251

    Article  Google Scholar 

  52. Shifrin EI, Ruotolo R (1999) Natural frequencies of a beam with an arbitrary number of cracks. J Sound Vib 222(3):409–423. https://doi.org/10.1006/jsvi.1998.2083

    Article  Google Scholar 

  53. Zhao X, Zhao YR, Gao XZ, Li XY, Li YH (2016) Green’s functions for the forced vibrations of cracked Euler–Bernoulli beams. Mech Syst Signal Process 68–69:155–175. https://doi.org/10.1016/j.ymssp.2015.06.023

    Article  Google Scholar 

  54. Caddemi S, Caliò I (2009) Exact closed-form solution for the vibration modes of the Euler–Bernoulli beam with multiple open cracks. J Sound Vib 327(3–5):473–489. https://doi.org/10.1016/j.jsv.2009.07.008

    Article  Google Scholar 

  55. Caddemi S, Morassi A (2013) Multi-cracked Euler–Bernoulli beams: mathematical modeling and exact solutions. Int J Solids Struct 50(6):944–956. https://doi.org/10.1016/j.ijsolstr.2012.11.018

    Article  Google Scholar 

  56. Failla G (2016) An exact generalised function approach to frequency response analysis of beams and plane frames with the inclusion of viscoelastic damping. J Sound Vib 360:171–202. https://doi.org/10.1016/j.jsv.2015.09.006

    Article  Google Scholar 

  57. Failla G (2019) An exact modal analysis approach to vibration analysis of structures with mass-spring subsystems and rotational joints. J Sound Vib 438:191–219. https://doi.org/10.1016/j.jsv.2018.09.025

    Article  Google Scholar 

  58. Den Hartog JP (1962) Mechanical vibrations. McGraw-Hill, New York

    MATH  Google Scholar 

  59. Housner GW et al (1997) Structural control: past, present and future. J Eng Mech 123(9):897–971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897)

    Article  Google Scholar 

  60. Spencer BF, Nagarajaiah S (2003) State of the art of structural control. J Struct Eng 129(7):845–856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845)

    Article  Google Scholar 

  61. Adam C, Di Lorenzo S, Failla G, Pirrotta A (2017) On the moving load problem in beam structures equipped with tuned mass dampers. Meccanica 52:3101–3115. https://doi.org/10.1007/s11012-016-0599-4

    Article  MathSciNet  MATH  Google Scholar 

  62. Failla G, Di Paola M, Pirrotta A, Burlon A, Dunn I (2019) Random vibration mitigation of beams via tuned mass dampers with spring inertia effects. Meccanica 54:1365–1383. https://doi.org/10.1007/s11012-019-00983-8

    Article  MathSciNet  Google Scholar 

  63. Santoro R, Failla G (2019) Effect of uncertainty in dynamic response of multi-cracked beams. In: 15th international conference—dynamical systems—theory and applications, December 2–5, 2019, Łódź, Poland (Abstract)

  64. Yavari A, Sarkani S, Moyer ET (2000) On applications of generalized functions to beam bending problems. Int J Solids Struct 37(40):5675–5705. https://doi.org/10.1016/S0020-7683(99)00271-1

    Article  MathSciNet  MATH  Google Scholar 

  65. Yavari A, Sarkani S (2001) On applications of generalized functions to the analysis of Euler–Bernoulli beam-columns with jump discontinuities. Int J Mech Sci 43:1543–1562. https://doi.org/10.1016/S0020-7403(00)00041-2

    Article  MATH  Google Scholar 

  66. Falsone G (2002) The use of generalised functions in the discontinuous beam bending differential equation. Int J Eng Educ 18(3):337–343

    Google Scholar 

  67. Palmeri A, Cicirello A (2011) Physically-based Dirac’s delta functions in the static analysis of multi-cracked Euler–Bernoulli and Timoshenko beams. Int J Solids Struct 48(14–15):2184–2195. https://doi.org/10.1016/j.ijsolstr.2011.03.024

    Article  Google Scholar 

  68. Burlon A, Failla G, Arena F (2017) Coupled bending and torsional free vibrations of beams with in-span supports and attached masses. Eur J Mech A/Solids 66:387–411. https://doi.org/10.1016/j.euromechsol.2017.07.015

    Article  MathSciNet  MATH  Google Scholar 

  69. Pownuk A. (2004) Efficient method of solution of large scale engineering problems with interval parameters. In: Muhanna RL, Mullen RL (eds) Proc. NSF workshop on reliable engineering computing (REC2004), Savannah, GA, USA

  70. Qiu Z, Elishakoff I (1998) Antioptimization of structures with large uncertain-but-non random parameters via interval analysis. Comput Methods Appl Mech Eng 152:361–372

    Article  Google Scholar 

  71. Santoro R, Muscolino G, Elishakoff I (2015) Optimization and anti-optimization solution of combined parameterized and improved interval analyses for structures with uncertainties. Comput Struct 149:31–42. https://doi.org/10.1016/j.compstruc.2014.11.006

    Article  Google Scholar 

  72. Li Y, Xu YL (2018) Increasing accuracy in the interval analysis by the improved format of interval extension based on the first order Taylor series. Mech Syst Signal Process 104:744–757. https://doi.org/10.1016/j.ymssp.2017.11.037

    Article  Google Scholar 

  73. Slepyan LI (2018) Structural discontinuity as generalized strain and Fourier transform for discrete-continuous systems. Int J Eng Sci 130:199–214. https://doi.org/10.1016/j.ijengsci.2018.06.004

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Italian Ministry of Education, University and Research (MIUR) under the P.R.I.N. 2017 National Grant “Multiscale Innovative Materials and Structures” (Project Code 2017J4EAYB; University of Reggio Calabria Research Unit).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Santoro.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Analytical form of the frequency response

Terms in Eq. (3) were derived in closed analytical form in previous studies [56, 57]. For convenience, here they are reported for a general case where cracks (linearly-elastic rotational springs) and TMDs (mass-spring-damper subsystems) always occur at the same position \(x_{k}\), for k = 1,2…N. Changes are straightforward when either a crack or a TMD are located at a given abscissa, as explained below.

Terms in Eq. (3) are:

$${\mathbf{W}}\left(x \right) = {\varvec{\Omega}}\left(x \right) + \sum\limits_{j = 1}^{N} {{\mathbf{J}}\left({x,x_{j}} \right){\varvec{\Phi}}_{{\varvec{\Omega}}} \left({x_{j}} \right)} + \sum\limits_{j = 2}^{N} {{\mathbf{J}}\left({x,x_{j}} \right)\sum\limits_{2 \le q \le j}^{{}} {\sum\limits_{{(\underbrace {j,m,n,\ldots,r,s}_{q}) \in {\mathbb{N}}_{q}^{\left(j \right)}}}^{{}} {{\varvec{\Phi}}_{{\mathbf{J}}} \left({x_{j},x_{m}} \right){\varvec{\Phi}}_{{\mathbf{J}}} \left({x_{m},x_{n}} \right) \cdot \cdot {\varvec{\Phi}}_{{\mathbf{J}}} \left({x_{r},x_{s}} \right){\varvec{\Phi}}_{{\varvec{\Omega}}} \left({x_{s}} \right)}}}$$
(A.1)
$${\mathbf{Y}}^{\left(f \right)} \left(x \right) = {\mathbf{F}}\left(x \right) + \sum\limits_{j = 1}^{N} {{\mathbf{J}}\left({x,x_{j}} \right){\varvec{\Phi}}^{\left(f \right)} \left({x_{j}} \right)} + \sum\limits_{j = 2}^{N} {{\mathbf{J}}\left({x,x_{j}} \right)\sum\limits_{2 \le q \le j}^{{}} {\sum\limits_{{\left({j,m,n,\ldots,r,s} \right) \in {\mathbb{N}}_{q}^{\left(j \right)}}}^{{}} {{\varvec{\Phi}}_{{\mathbf{J}}} \left({x_{j},x_{m}} \right) \cdots {\varvec{\Phi}}_{{\mathbf{J}}} \left({x_{r},x_{s}} \right){\varvec{\Phi}}^{\left(f \right)} \left({x_{s}} \right)}}}$$
(A.2)

where \({\mathbb{N}}_{q}^{\left(j \right)} = \{(\underbrace {j,m,n,\ldots r,s}_{q}):j > m > n >\cdots > r > s;m,n,\ldots r,s = 1,2,\ldots,\left({j - 1} \right)\}\) is the set including all possible q-ples of indexes \((\underbrace {j,m,n,\ldots r,s}_{q})\) such that \(j > m > n >\cdots > r > s\), being \(2 \le q \le j\).

In Eq. (A.1), matrices \({\varvec{\Omega}}\left(x \right)\) and \({\varvec{\Phi}}_{{\varvec{\Omega}}} \left({x_{j}} \right)\) depend on the solutions to the homogeneous differential equation associated with Eq. (4), i.e.

$${\varvec{\Omega}}\left(x \right) = \left[{\begin{array}{*{20}c} {{\text{e}}^{- \beta x}} & {{\text{e}}^{\beta x}} & {\cos \left({\beta x} \right)} & {\sin \left({\beta x} \right)} \\ {- \beta {\text{e}}^{- \beta x}} & {\beta {\text{e}}^{\beta x}} & {- \beta \sin \left({\beta x} \right)} & {\beta \cos \left({\beta x} \right)} \\ {- EI\beta^{2} {\text{e}}^{- \beta x}} & {- EI\beta^{2} {\text{e}}^{\beta x}} & {EI\beta^{2} \cos \left({\beta x} \right)} & {EI\beta^{2} \sin \left({\beta x} \right)} \\ {EI\beta^{3} {\text{e}}^{- \beta x}} & {- EI\beta^{3} {\text{e}}^{\beta x}} & {- EI\beta^{3} \sin \left({\beta x} \right)} & {EI\beta^{3} \cos \left({\beta x} \right)} \\ \end{array}} \right]$$
(A.3)
$${\varvec{\Phi}}_{{\varvec{\Omega}}} \left({x_{j}} \right) = \left[{\begin{array}{*{20}c} {- \kappa_{{meq_{j}}} \left(\omega \right)\left({{\varvec{\Omega}}\left({x_{j}} \right)} \right)_{1}} \\ {- \kappa_{{{\Delta}\Theta_{j}}}^{- 1} \left({{\varvec{\Omega}}\left({x_{j}} \right)} \right)_{3}} \\ \end{array}} \right]$$
(A.4)

being \(\beta = \left({EI} \right)^{{{{- 1} \mathord{\left/{\vphantom {{- 1} 4}} \right. \kern-0pt} 4}}} \rho^{{{1 \mathord{\left/{\vphantom {1 4}} \right. \kern-0pt} 4}}} \omega^{{{1 \mathord{\left/{\vphantom {1 2}} \right. \kern-0pt} 2}}}\) and \(\left({{\varvec{\Omega}}\left({x_{j}} \right)} \right)_{i}\) row vectors coinciding with the ith row of matrix \({\varvec{\Omega}}\left(x \right)\).

In Eqs. (A.1) and (A.2), matrices \({\mathbf{J}}\left({x,x_{j}} \right)\) and \({\varvec{\Phi}}_{{\mathbf{J}}} \left({x_{j},x_{k}} \right)\) depend on the particular solutions of Eq. (4) associated with a unit Dirac’s delta and its second formal derivative, representing respectively a unit transverse force and a unit relative rotation between adjacent cross sections. Specifically,

$${\mathbf{J}}\left({x,x_{j}} \right) = \left[{\begin{array}{*{20}c} {J_{V,P}^{{}}} & {J_{V,\Delta \Theta}^{{}}} \\ {J_{\Theta,P}^{{}}} & {J_{\Theta,\Delta \Theta}^{{}}} \\ {J_{M,P}^{{}}} & {J_{M,\Delta \Theta}^{{}}} \\ {J_{S,P}^{{}}} & {J_{S,\Delta \Theta}^{{}}} \\ \end{array}} \right]$$
(A.5)
$${\varvec{\Phi}}_{{\mathbf{J}}}^{{}} \left({x_{j}^{{}},x_{k}^{{}}} \right) = \left[{\begin{array}{*{20}c} {- \kappa_{{meq_{j}}} \left(\omega \right)\left({{\mathbf{J}}\left({x_{j}^{{}},x_{k}^{{}}} \right)} \right)_{1}} \\ {- \kappa_{{\Delta \Theta_{j}}}^{- 1} \left({{\mathbf{J}}\left({x_{j}^{{}},x_{k}^{{}}} \right)} \right)_{3}} \\ \end{array}} \right]$$
(A.6)

where \(\left({{\mathbf{J}}\left({x_{j},x_{k}} \right)} \right)_{i}\) denotes the ith row of matrix \({\mathbf{J}}\left({x_{j},x_{k}} \right)\). In Eq. (A.5), \(J_{V,P}^{{}}\) and \(J_{V,\Delta \Theta}^{{}}\) are the particular solutions of Eq. (4) associated with a unit Dirac’s delta and its second formal derivative at \(x_{j}\),

$$J_{V,P}^{{}} \left({x,x_{j}} \right) = \alpha \left({\sinh \left({\beta \left({x - x_{j}} \right)} \right) - { \sin }\left({\beta \left({x - x_{j}} \right)} \right)} \right)H\left({x - x_{j}} \right)$$
(A.7)
$$J_{V,\Delta \Theta}^{{}} \left({x,x_{j}} \right) = EI\alpha \beta^{2} \left({\sinh \left({\beta \left({x - x_{j}} \right)} \right) + \sin \left({\beta \left({x - x_{j}} \right)} \right)} \right)H\left({x - x_{j}} \right)$$
(A.8)

being \(\alpha = 2^{- 1} \left({EI} \right)^{{{{- 1} \mathord{\left/{\vphantom {{- 1} 4}} \right. \kern-0pt} 4}}} \rho^{{- {3 \mathord{\left/{\vphantom {3 4}} \right. \kern-0pt} 4}}} \omega^{{- {3 \mathord{\left/{\vphantom {3 2}} \right. \kern-0pt} 2}}}\). Terms on the first and second columns of Eq. (A.5) are derived using the beam equations for shear force, bending moment, rotation and deflection under a unit transverse force and a unit relative rotation between adjacent cross sections at \(x_{j}\) (see Appendix A in Ref. [19]).

Finally, in Eq. (A.2) matrix \({\varvec{\Phi}}^{\left(f \right)} \left({x_{j}} \right)\) and vector \({\mathbf{F}}\left(x \right)\) are load-dependent terms given as

$${\mathbf{F}}\left(x \right) = {\mathbf{J}}\left({x,\xi} \right)P$$
(A.9)
$${\varvec{\Phi}}^{\left(f \right)} \left({x_{j}} \right) = \left[{\begin{array}{*{20}c} {- \kappa_{{meq_{j}}} \left(\omega \right)\left({{\mathbf{F}}\left({x_{j}} \right)} \right)_{1}} \\ {- \kappa_{{{\Delta}\Theta_{j}}}^{- 1} \left({{\mathbf{F}}\left({x_{j}} \right)} \right)_{3}} \\ \end{array}} \right]$$
(A.10)

where P is the point force in Eq. (4). It is noteworthy that Eq. (3) can readily be generalized for arbitrary distributed loads \(f\left(x \right)e^{{{\text{i}}\omega t}}\). In this case, Eq. (A.9) takes the form

$${\mathbf{F}}\left(x \right) = \int_{0}^{L} {{\mathbf{J}}\left({x,y} \right)f\left(y \right)dy}$$
(A.11)

Using simple integration rules of generalized functions, closed analytical solutions to Eq. (A.11) can be obtained for typical loading functions \(f\left(x \right)\) as, e.g., polynomial ones [56, 57].

Changes if a single crack or a TMD occurs at a given \(x_{j}^{{}}\) are straightforward. Specifically, \(\kappa_{{\Delta \Theta_{j}}}^{{}} = \infty\) shall be set if no crack occurs at \(x_{j}^{{}}\) and, correspondingly, all terms in the 2nd row of matrices \({\varvec{\Phi}}_{{\varvec{\Omega}}}^{{}} \left({x_{j}^{{}}} \right)\), \({\varvec{\Phi}}_{{\mathbf{J}}}^{{}} \left({x_{j}^{{}},x_{k}^{{}}} \right)\) will vanish. In addition, terms in the 2nd column of matrix \({\varvec{\Phi}}_{{\mathbf{J}}}^{{}} \left({x_{m}^{{}},x_{j}^{{}}} \right)\), shall be set equal to zero for all \(x_{m}^{{}} > x_{j}^{{}}\). Likewise, if no TMD occurs at \(x = x_{j}^{{}}\), \(\kappa_{{meq_{j}}}^{{}} \left(\omega \right) = 0\) shall be set at \(x_{j}^{{}}\) and, correspondingly, terms in the 1st row of matrices \({\varvec{\Phi}}_{{\varvec{\Omega}}}^{{}} \left({x_{j}^{{}}} \right)\), \({\varvec{\Phi}}_{{\mathbf{J}}}^{{}} \left({x_{j}^{{}},x_{k}^{{}}} \right)\) will vanish and terms in the 1st column of matrix \({\varvec{\Phi}}_{{\mathbf{J}}}^{{}} \left({x_{m}^{{}},x_{j}^{{}}} \right)\) shall be set equal to zero for all \(x_{m}^{{}} > x_{j}^{{}}\).

Appendix B: Application of monotonicity test

The present Appendix reports an explicative application of the M-test discussed in Sect. 3.1. The analysis is focused on the multi-cracked clamped-supported beam equipped with a TMD. The data concerning the beam parameters as well as the TMD parameters are the same reported in the “Numerical applications” Sect. 4. Let us remind the examined beam is loaded by a transversal 3 Hz point force applied at \(\xi = {L \mathord{\left/{\vphantom {L 4}} \right. \kern-0pt} 4} = 3{\text{m}}\).

The damaged beam present Ns= 3 springs modelling the cracks located at the nominal positions \(x_{0,1} = {L \mathord{\left/{\vphantom {L 6}} \right. \kern-0pt} 6} = 2{\text{m}}\),\({\kern 1pt} {\kern 1pt} x_{0,2} = {L \mathord{\left/{\vphantom {L 3}} \right. \kern-0pt} 3} = 4{\text{m}}\) and \(x_{0,3} = {{2L} \mathord{\left/{\vphantom {{2L} 3}} \right. \kern-0pt} 3} = 8{\text{m}}\) with a nominal stiffness value \(\kappa_{{{\Delta \Theta}_{0,j}}} = \kappa_{{{\Delta \Theta}_{0}}} = 5.27 \times 10^{6} {\text{Nm}}_{{}} ( ={{ 6EI} \mathord{\left/{\vphantom {{ 6EI} {L )}}} \right. \kern-0pt} {L )}}\) for j = 1,2,3.

To illustrate the results of the M-test, the attention is focused on the real part \(\text{Re} \left[{V^{I} (x)} \right]\) of the deflection response function \(R(x,{\boldsymbol{\upkappa}}_{\Delta \Theta}^{I},{\mathbf{x}}^{I}) = V(x,{\boldsymbol{\upkappa}}_{\Delta \Theta}^{I},{\mathbf{x}}^{I})\). All the considerations can be extended to the imaginary part \(\text{Im} \left[{V^{I} (x)} \right]\) as well as to the other variable responses, in real and imaginary parts.

First the sensitivity functions in Eq. (15a, 15b) related to the deflection response \(V(x)\) are calculated with respect to the uncertain parameters characterizing the 1st crack, namely \(\sigma_{{\kappa_{{\Delta \Theta_{1}}}}}^{\left(V \right)} (x,\kappa_{{\Delta \Theta_{1}}})\) for the stiffness \(\kappa_{{{\Delta \Theta}_{1}}}\) and \(\sigma_{{x_{1}}}^{\left(V \right)} (x,x_{1})\) for the position \(x_{1}\).

Figure 17a represents the real part of the deflection sensitivity \(\text{Re} \left[{\sigma_{{\kappa_{{\Delta \Theta_{1}}}}}^{\left(V \right)} (x,\kappa_{{\Delta \Theta_{1}}})} \right]\) along the beam axis and for the spring stiffness \(\kappa_{{{\Delta \Theta}_{1}}}\) varying in the related interval being \(\underline{\kappa}_{{\Delta \Theta_{1}}} \le \kappa_{\Delta \Theta} \le \overline{\kappa}_{{\Delta \Theta_{1}}}\)(see Eq. (15a)). In particular considering a deviation \(\Delta \kappa_{{{\Delta \Theta}_{1}}} = 0.2\kappa_{{{\Delta \Theta}_{0}}}\) with \(\kappa_{{{\Delta \Theta}_{0}}} = {{ 6EI} \mathord{\left/{\vphantom {{ 6EI} L}} \right. \kern-0pt} L}\) we obtain \(\underline{\kappa}_{{\Delta \Theta_{1}}} = {{4.8EI} \mathord{\left/{\vphantom {{4.8EI} {L = 4.2 \times 10^{6}}}} \right. \kern-0pt} {L = 4.2 \times 10^{6}}}{\text{Nm}}\) and \(\overline{\kappa}_{{\Delta \Theta_{1}}} = {{7.2EI} \mathord{\left/{\vphantom {{7.2EI} {L = 6.3 \times 10^{6}}}} \right. \kern-0pt} {L = 6.3 \times 10^{6}}}{\text{Nm}}\).

Fig. 17
figure 17

Multi-cracked clamped-supported beam in Fig. 3b: real part of the deflection sensitivity function \(\text{Re} [\sigma_{{\kappa_{{\Delta \Theta_{1}}}}}^{(V)} (x,\kappa_{{\Delta \Theta_{1}}})]\) for spring stiffness \(\kappa_{{{\Delta \Theta}_{1}}}\) varying in \([\underline{\kappa}_{{\Delta \Theta_{1}}},\overline{\kappa}_{{\Delta \Theta_{1}}}]\), computed at a all abscissas x; b x = \(x_{0,1}\) = L/6; c x = L/2

As explained in Sect. 3.1, the M-test requires the sign analysis of \(\text{Re} \left[{\sigma_{{\kappa_{{\Delta \Theta_{1}}}}}^{\left(V \right)} (x,\kappa_{{\Delta \Theta_{1}}})} \right]\) at every abscissa x of interest as \(\kappa_{{{\Delta \Theta}_{1}}}\) varies in the interval \(\left[{\underline{\kappa}_{{\Delta \Theta_{1}}},\overline{\kappa}_{{\Delta \Theta_{1}}}} \right]\). As example let us consider as abscissas of interest \(x = x_{0,1} = L/6\) at the spring position and \(x = L/2\) at the beam mid-span. Figures 17b and c show that both \(\text{Re} \left[{\sigma_{{\kappa_{{\Delta \Theta_{1}}}}}^{\left(V \right)} ({L \mathord{\left/{\vphantom {L 6}} \right. \kern-0pt} 6},\kappa_{{\Delta \Theta_{1}}})} \right]\) (always positive at \(x = x_{0,1} = L/6\)) and \(\text{Re} \left[{\sigma_{{\kappa_{{\Delta \Theta_{1}}}}}^{\left(V \right)} ({L \mathord{\left/{\vphantom {L 2}} \right. \kern-0pt} 2},\kappa_{{\Delta \Theta_{1}}})} \right]\) (always negative at \(x = L/2\)) do not change their sign as \(\kappa_{{{\Delta \Theta}_{1}}}\) varies in the interval \(\left[{\underline{\kappa}_{{\Delta \Theta_{1}}},\bar{\kappa}_{{\Delta \Theta_{1}}}} \right]\): we can deduce that the real part of the deflection function \(\text{Re} \left[{V(x)} \right]\) is monotonic with respect to \(\kappa_{{{\Delta \Theta}_{1}}}\) at the selected abscissas \(x = L/6\) and \(x = L/2\).

Similarly, let us consider the uncertainty in the spring position \(x_{1}\). Figure 18 shows the real part of the deflection sensitivity function \(\text{Re} \left[{\sigma_{{x_{1}}}^{\left(V \right)} (x,x_{1})} \right]\) with respect to the uncertain parameter \(x_{1}\). For a deviation \(\Delta x_{1} = 0.2\)(see Eq. (9b)) the interval parameter \(x_{1} = 2{m}\) is bounded by \(\underline{x}_{1} = 1.8{\text{m}}\) and \(\overline{x}_{1} = 2.2{\text{m}}\): in Fig. 18a the interval \(\left[{1.8,2.2} \right]\) is singled out from the whole beam axis. Aiming to establish the monotonic or non-monotonic behaviour of \(\text{Re} \left[{V(x)} \right]\) with respect to \(x_{1}\), the M-test requires again an exam on the sign of \(\text{Re} \left[{\sigma_{{x_{1}}}^{\left(V \right)} (x,x_{1})} \right]\) which is conducted, for the sake of simplicity, at the same previous abscissas of interest, as \(x_{1}^{{}}\) varies within the pertinent interval \(\left[{\underline{x}_{1},\overline{x}_{1}} \right]\). In detail, Fig. 18b shows that at \(x = x_{0,1} = L/6\) the deflection function \(\text{Re} \left[{V(x)} \right]\) in its real part is non-monotonic with respect to the parameter \(x_{1}\) as evident by the change in sign of \(\text{Re} [\sigma_{{x_{1}}}^{\left(V \right)} (L/6,x_{1})]\) for varying \(x_{1}\). At the beam mid-span \(x = L/2\) it is confirmed a monotonic behaviour of \(\text{Re} \left[{V(x)} \right]\) with respect to the parameter \(x_{1}\) (\(\text{Re} [\sigma_{{x_{1}}}^{\left(V \right)} (L/6,x_{1})]\) always negative for varying \(x_{1}\) as shown in Fig. 18c).

Fig. 18
figure 18

Damaged clamped-supported beam in Fig. 3b: real part of the deflection sensitivity function \(\text{Re} [\sigma_{{x_{1}}}^{(V)} (x,x_{1})]\) for spring stiffness \(x_{1}\) varying in \([\underline{x}_{1},\overline{x}_{1}]\), computed at a all abscissas x; b x = \(x_{0,1}\) = L/6; c x = L/2

It is worth to note that in the M-test application analogous graphics shall be evaluated at any abscissa x of interest, to conclude on monotonicity/non-monotonicity of the real part of the deflection function with respect to \(\kappa_{{{\Delta \Theta}_{1}}}\) and \(x_{1}\) of the 1st crack, at that x. Moreover, the M-test described for the uncertain parameters of the 1st crack shall be implemented for the uncertain parameters of all the other cracks and for other frequency values.

Appendix C: Bounds of the stress resultants

Mirroring the steps followed in the main text to calculate the bounds of the deflection \(V^{I} (x)\), in this Appendix LBs and UBs of bending moment \(M^{I} (x) \equiv M\left({x,{\boldsymbol{\upkappa}}_{{\Delta {\Theta}}}^{I},{\mathbf{x}}^{I}} \right)\) and shear force \(S^{I} (x) \equiv S\left({x,{\boldsymbol{\upkappa}}_{{\Delta {\Theta}}}^{I},{\mathbf{x}}^{I}} \right)\) are similarly calculated for the multi-cracked beams in Fig. 3. As in the main text, the forcing frequency is 3 Hz.

For brevity, the uncertainty is considered simultaneously in stiffness \(\kappa_{{\Delta {\Theta}_{j}}}^{I}\) and position \(x_{j}\) of all springs (j = 1,2,3).

3.1 Multi-cracked simply-supported beam equipped with a TMD

The M-test conducted for the simply-supported beam in Fig. 3a reveals that, for the selected forcing frequency = 3 Hz, real and imaginary parts of bending moment \(M\left({x,{\boldsymbol{\upkappa}}_{{\Delta {\Theta}}}^{I},{\mathbf{x}}^{I}} \right)\) and shear force \(S\left({x,{\boldsymbol{\upkappa}}_{{\Delta {\Theta}}}^{I},{\mathbf{x}}^{I}} \right)\) exhibit both a monotonic behaviour with respect to all the parameters collected in the vectors \({\boldsymbol{\upkappa}}_{{\Delta {\Theta}}}^{I}\) and \({\mathbf{x}}^{I}\) characterizing the cracks. It is noteworthy that this holds at every abscissa x.

Therefore, the SB method (Sect. 3.2) can be applied to calculate the bounds of both stress resultants, taking full advantage of the sensitivities provided by Eq. (16a, b) and the explicit expressions in Eq. (3).

Figures 19c and 20c show the bounds of real and imaginary parts of the bending moment function \(M\left({x,{\boldsymbol{\upkappa}}_{{\Delta {\Theta}}}^{I},{\mathbf{x}}^{I}} \right)\), along with the sensitivities with respect to stiffness \(\kappa_{{\Delta {\Theta}_{j}}}^{I}\) (Figs. 19a, 20a) and position \(x_{j}\) (Figs. 19b, 20b) for all springs. Analogous results are reported in Figs. 21 and 22 for the shear force function \(S\left({x,{\boldsymbol{\upkappa}}_{{\Delta {\Theta}}}^{I},{\mathbf{x}}^{I}} \right)\).

Fig. 19
figure 19

Multi-cracked simply-supported beam in Fig. 3a, considering uncertain stiffness \(\kappa_{{{\Delta \Theta}_{j}}}\) and position \(x_{j}\) of all springs (\(\Delta \kappa_{{{\Delta \Theta}_{j}}} = 0.2\kappa_{{{\Delta \Theta}_{0}}}\),\(\Delta x_{j} = 0.2\) with j = 1,2,3): a real parts of the sensitivity functions \(\text{Re} [\sigma_{{\kappa_{{\Delta {\Theta}_{j}}}}}^{\left(M \right)} (x)]\), b real parts of the sensitivity functions \(\text{Re} [\sigma_{{x_{j}}}^{\left(M \right)} (x)]\) and c LB and UB of the real part of the bending moment function \(\text{Re} [M(x)]\) provided by the proposed method (SB method) and VM

Fig. 20
figure 20

Multi-cracked simply-supported beam in Fig. 3a, considering uncertain stiffness \(\kappa_{{{\Delta \Theta}_{j}}}\) and position \(x_{j}\) of all springs (\(\Delta \kappa_{{{\Delta \Theta}_{j}}} = 0.2\kappa_{{{\Delta \Theta}_{0}}}\),\(\Delta x_{j} = 0.2\) with j = 1,2,3): a imaginary parts of the sensitivity functions \(\text{Im} [\sigma_{{\kappa_{{\Delta {\Theta}_{j}}}}}^{\left(M \right)} (x)]\), b imaginary parts of the sensitivity functions \(\text{Im} [\sigma_{{x_{j}}}^{\left(M \right)} (x)]\) and c LB and UB of the imaginary part of the bending moment function \(\text{Im} [M(x)]\) provided by the proposed method (SB method) and VM

Fig. 21
figure 21

Multi-cracked simply-supported beam in Fig. 3a, considering uncertain stiffness \(\kappa_{{{\Delta \Theta}_{j}}}\) and position \(x_{j}\) of all springs (\(\Delta \kappa_{{{\Delta \Theta}_{j}}} = 0.2\kappa_{{{\Delta \Theta}_{0}}}\),\(\Delta x_{j} = 0.2\) with j = 1,2,3): a real parts of the sensitivity functions \(\text{Re} [\sigma_{{\kappa_{{\Delta {\Theta}_{j}}}}}^{\left(S \right)} (x)]\), b real parts of the sensitivity functions \(\text{Re} [\sigma_{{x_{j}}}^{\left(S \right)} (x)]\) and c LB and UB of the real part of the shear force function \(\text{Re} [S(x)]\) provided by the proposed method (SB method) and VM

Fig. 22
figure 22

Multi-cracked simply-supported beam in Fig. 3a, considering uncertain stiffness \(\kappa_{{{\Delta \Theta}_{j}}}\) and position \(x_{j}\) of all springs (\(\Delta \kappa_{{{\Delta \Theta}_{j}}} = 0.2\kappa_{{{\Delta \Theta}_{0}}}\),\(\Delta x_{j} = 0.2\) with j = 1,2,3): a imaginary parts of the sensitivity functions \(\text{Im} [\sigma_{{\kappa_{{\Delta {\Theta}_{j}}}}}^{\left(S \right)} (x)]\), b imaginary parts of the sensitivity functions \(\text{Im} [\sigma_{{x_{j}}}^{\left(S \right)} (x)]\) and c LB and UB of the imaginary part of the shear force function \(\text{Im} [S(x)]\) provided by the proposed method (SB method) and VM

As explained in detail in Sect. 3.2, the study on the signs of sensitivities (see Figs. 19a, b; 20a, b; 21a, b; 22a, b) provides the fundamental information to evaluate the vectors in Eq. (18ad) and build the interval solution.

Efficacy and the accuracy of the proposed approach is confirmed by the excellent agreement between the proposed solutions and those obtained by the VM.

Additionally, notice Eq. (14a, b) allows to straightforwardly evaluate the amplitude bounds for both the stress resultants, reported in Fig. 23.

Fig. 23
figure 23

Multi-cracked simply-supported beam in Fig. 3a: LB and UB of the amplitude of a the bending moment function \(\left| {M^{I} (x)} \right|\) and b the shear force function \(\left| {S^{I} (x)} \right|\) provided by the proposed method considering uncertain stiffness \(\kappa_{{{\Delta \Theta}_{j}}}\) and position \(x_{j}\) of all springs (\(\Delta \kappa_{{{\Delta \Theta}_{j}}} = 0.2\kappa_{{{\Delta \Theta}_{0}}}\),\(\Delta x_{j} = 0.2\) with j = 1,2,3)

3.2 Multi-cracked clamped-supported beam equipped with a TMD

For the clamped-supported beam in Fig. 3b, the M-test implemented at the forcing frequency = 3 Hz reveals that there are ranges of abscissas x where both bending moment function \(M\left({x,{\boldsymbol{\upkappa}}_{{\Delta {\Theta}}}^{I},{\mathbf{x}}^{I}} \right)\) and shear force \(S\left({x,{\boldsymbol{\upkappa}}_{{\Delta {\Theta}}}^{I},{\mathbf{x}}^{I}} \right)\) are non-monotonic functions with respect to uncertain parameters related to the positions of the springs; this occurs for both real and imaginary parts. At these abscissas x, the bounds of the stress resultant functions are evaluated via the GO technique (Sect. 3.3) while, at those abscissas where bending moment and shear force functions have monotonic behaviour with respect to all the uncertain parameters, the SB method (Sect. 3.2) can be applied once again. These considerations hold true for both real and imaginary parts.

Figures 24c and 25c depict the bounds of real and imaginary part of bending moment function \(M\left({x,{\boldsymbol{\upkappa}}_{{\Delta {\Theta}}}^{I},{\mathbf{x}}^{I}} \right)\); the sensitivities with respect to stiffness \(\kappa_{{\Delta {\Theta}_{j}}}^{I}\) and position \(x_{j}\) for all springs are reported in Fig. 24a, b for the real part and in Fig. 25a, b for the imaginary parts

Fig. 24
figure 24

Multi-cracked clamped-supported beam in Fig. 3b, considering uncertain stiffness \(\kappa_{{{\Delta \Theta}_{j}}}\) and position \(x_{j}\) of all springs (\(\Delta \kappa_{{{\Delta \Theta}_{j}}} = 0.2\kappa_{{{\Delta \Theta}_{0}}}\),\(\Delta x_{j} = 0.2\) with j = 1,2,3): a real parts of the sensitivity functions \(\text{Re} [\sigma_{{\kappa_{{\Delta {\Theta}_{j}}}}}^{\left(M \right)} (x)]\), b real parts of the sensitivity functions \(\text{Re} [\sigma_{{x_{j}}}^{\left(M \right)} (x)]\) and (b) LB and UB of the real part of the bending moment function \(\text{Re} [M(x)]\) provided by the proposed method (SB method/GO technique) and VM/MCS

Fig. 25
figure 25

Multi-cracked clamped-supported beam in Fig. 3b, considering uncertain stiffness \(\kappa_{{{\Delta \Theta}_{j}}}\) and position \(x_{j}\) of all springs (\(\Delta \kappa_{{{\Delta \Theta}_{j}}} = 0.2\kappa_{{{\Delta \Theta}_{0}}}\),\(\Delta x_{j} = 0.2\) with j = 1,2,3): a imaginary parts of the sensitivity functions \(\text{Im} [\sigma_{{\kappa_{{\Delta {\Theta}_{j}}}}}^{\left(M \right)} (x)]\), b imaginary parts of the sensitivity functions \(\text{Im} [\sigma_{{x_{j}}}^{\left(M \right)} (x)]\) and c LB and UB of the imaginary part of the bending moment function \(\text{Im} [M(x)]\) provided by the proposed method (SB method/GO technique) and VM/MCS

Corresponding results are reported for the shear force \(S\left({x,{\boldsymbol{\upkappa}}_{{\Delta {\Theta}}}^{I},{\mathbf{x}}^{I}} \right)\) in Figs. 26 and 27.

Fig. 26
figure 26

Multi-cracked clamped-supported beam in Fig. 3b, considering uncertain stiffness \(\kappa_{{{\Delta \Theta}_{j}}}\) and position \(x_{j}\) of all springs (\(\Delta \kappa_{{{\Delta \Theta}_{j}}} = 0.2\kappa_{{{\Delta \Theta}_{0}}}\),\(\Delta x_{j} = 0.2\) with j = 1,2,3): a real parts of the sensitivity functions \(\text{Re} [\sigma_{{\kappa_{{\Delta {\Theta}_{j}}}}}^{\left(S \right)} (x)]\), b real parts of the sensitivity functions \(\text{Re} [\sigma_{{x_{j}}}^{\left(S \right)} (x)]\) and c LB and UB of the real part of the shear force function \(\text{Re} [S(x)]\) provided by the proposed method (SB method/GO technique) and VM/MCS

Fig. 27
figure 27

Multi-cracked clamped-supported beam in Fig. 3b, considering uncertain stiffness \(\kappa_{{{\Delta \Theta}_{j}}}\) and position \(x_{j}\) of all springs (\(\Delta \kappa_{{{\Delta \Theta}_{j}}} = 0.2\kappa_{{{\Delta \Theta}_{0}}}\),\(\Delta x_{j} = 0.2\) with j = 1,2,3): a imaginary parts of the sensitivity functions \(\text{Im} [\sigma_{{\kappa_{{\Delta {\Theta}_{j}}}}}^{\left(S \right)} (x)]\), b imaginary parts of the sensitivity functions \(\text{Im} [\sigma_{{x_{j}}}^{\left(S \right)} (x)]\) and c LB and UB of the imaginary part of shear force function \(\text{Im} [S(x)]\) provided by the proposed approach (SB method/GO technique) and VM/MCS

Again, an excellent agreement is noticed between the proposed solutions and those obtained by the VM combined with the MCS, for both real and imaginary parts of the stress resultants. For completeness, Fig. 28 shows the bounds of the amplitude of bending moment and shear force frequency responses, confirming the remarkable accuracy of the proposed approach.

Fig. 28
figure 28

Multi-cracked clamped-supported beam equipped with a TMD in Fig. 3b: LB and UB of the amplitude of a the bending moment function \(\left| {M^{I} (x)} \right|\) and b the shear force function \(\left| {S^{I} (x)} \right|\) provided by the proposed method considering uncertain stiffness \(\kappa_{{{\Delta \Theta}_{j}}}\) and position \(x_{j}\) of all springs (\(\Delta \kappa_{{{\Delta \Theta}_{j}}} = 0.2\kappa_{{{\Delta \Theta}_{0}}}\),\(\Delta x_{j} = 0.2\) with j = 1,2,3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santoro, R., Failla, G. An interval framework for uncertain frequency response of multi-cracked beams with application to vibration reduction via tuned mass dampers. Meccanica 56, 923–952 (2021). https://doi.org/10.1007/s11012-020-01290-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-020-01290-3

Keywords

Navigation