Skip to main content
Log in

The Thermal Conductivity of Glass Sieves: II. Liquid and Gas-Saturated Frits

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermal conductivity of liquid and gas-saturated glass sieves (frits) of porosities between 20 and 48 % is presented as measured at room temperature and ambient pressure. The saturating fluids cover a range in thermal conductivity from 0.018 W⋅m−1⋅K−1 to 0.598 W⋅m−1⋅K−1. The experimental results are fitted to a simple two-dimensional composite model for the heat transfer in porous media. The runs were carried out using a transient hot-bridge (THB) measuring instrument of an expanded uncertainty 3 % to 5 %. It turned out that (1) in order to correctly describe the experimental findings, a so-called thermal porosity has to be introduced that differs from the stated porosity of the frits. (2) There is not only a smaller-than-predicted thermal conductivity of gas-saturated frits as is known since a couple of decades but also a larger-than-predicted conductivity and, of course, a continuous transition between both effects. The whole latter effect can be attributed to the impact of dissolved He on the thermal conductivity of the matrix and be mathematically described in terms of the thermal porosity in the framework of the above-mentioned composite model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. All runs on the glass matrices were performed inside the vacuum chamber (Fig. 3) at a constant pressure of \(p = 0.03{\text{ mbar}}\).

  2. \(\left\langle {2{\text{ mcal/(cm}} \cdot {\text{sec}} \cdot^\circ {\text{C) = 0}}{\text{.84 W/(m}} \cdot {\text{K)}}} \right\rangle\)

References

  1. D.B. Ingham, I. Pop, Transport Phenomena in Porous Media (Pergamon, Bergama, 1998).

    MATH  Google Scholar 

  2. M. Kaviany, Principles of Heat Transfer in Porous Media, 2nd edn. (Springer, Berlin, 1994).

    MATH  Google Scholar 

  3. K. Vafai (ed.), Handbook of Porous Media (Marcel Dekker, New York, 2005).

    MATH  Google Scholar 

  4. H.T. Aichelmayr, F. Kulacki, The Effective Thermal Conductivity of Saturated Porous Media (Advanced Heat Transfer. Elsevier, Amsterdam, 2006), pp. 376–460

    Google Scholar 

  5. W. Woodside, J.H. Messmer, J. Appl. Phys. 32, 1688 (1961)

    Article  ADS  Google Scholar 

  6. W. Woodside, J.H. Messmer, J. Appl. Phys. 32, 1699 (1961)

    Article  ADS  Google Scholar 

  7. W. Woodside, J.H. Messmer, J. Geophys. Res. 65, 3481 (1960)

    Article  ADS  Google Scholar 

  8. U. Hammerschmidt, M. Abid, Int. J. Therm. Sci. 96, 119 (2015)

    Article  Google Scholar 

  9. ROBU Datenblatt und Eigenschaften VitraPOR Sinterfilter (ROBU Glasfilter-Geräte GmbH, Hattert, Germany).

  10. U. Hammerschmidt, Int. J. Thermophys. 16, 557 (1995)

    Article  ADS  Google Scholar 

  11. U. Hammerschmidt, V. Meier, Int. J. Thermophys. 27, 840 (2006)

    Article  ADS  Google Scholar 

  12. R. Model, R. Stosch, U. Hammerschmidt, Int. J. Thermophys. 28, 1447 (2007)

    Article  ADS  Google Scholar 

  13. DIN/ISO 3585 (Beuth Verlag GmbH, Berlin, 1980).

  14. ISO 4793:1980–10 (Beuth Verlag GmbH, Berlin, 1980).

  15. TUV NEL, Physical properties data services (PPDS), Thermodynamic properties database and calculation suite.

  16. C.Y. Ho, J. Kestin, W.A. Wakeham, Transport Properties of Fluids, Thermal Conductivity, Viscosity, and Diffusion Coefficient (Hemisphere, London, 1988).

    Google Scholar 

  17. J. Wang, M. Fiebig, Int. J. Thermophys. 16, 1353 (1995)

    Article  ADS  Google Scholar 

  18. U. Grigull, H. Sandner, Wärmeleitung (Springer, Berlin, 1979).

    Book  Google Scholar 

  19. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd edn. (Clarendon Press, Oxford, 1950).

    MATH  Google Scholar 

  20. ISO 7345:2018 (Beuth Verlag GmbH, Berlin 2018).

  21. M.R.J. Willie, P.F. Sandwick, J. Petrol. Technol. 6, 44 (1954)

    Article  Google Scholar 

  22. J.C. Harper, A.F. El Sahrigi, I&EC Fundamentals 4, 318 (1964)

    Article  Google Scholar 

  23. M. Abid, U. Hammerschmidt, J. Köhler, Int. J. Therm. Sci. 76, 43 (2014)

    Article  Google Scholar 

  24. L.J. Klinkenberg, Am. Petrol. Inst. Drilling and Production Practice, 200 (1959).

  25. J.U. Keller, S. Bohn, R. Staudt, To what extend is helium absorbed on porous solids at ambient temperature, Accessed 15 Sept 2020.

  26. P.L. Studt, J.F. Shackelford, M. Fulrath, J. Appl. Phys. 41, 2777 (1970)

    Article  ADS  Google Scholar 

  27. P.L. Studt, J.F. Shackelford, M. Fulrath, J. Appl. Phys. 43, 1619 (1972)

    Article  ADS  Google Scholar 

  28. V.O. Altemose, J. Appl. Phys. 32, 1309 (1961)

    Article  ADS  Google Scholar 

  29. T. Welter, R. Müller, J. Deubener, U. Marzok, Frontiers in Mat. 6, 1 (2020)

    Article  Google Scholar 

  30. F.J. Norton, J. Appl. Phys. 28, 34 (1957)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Hammerschmidt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammerschmidt, U., Abid, M. The Thermal Conductivity of Glass Sieves: II. Liquid and Gas-Saturated Frits. Int J Thermophys 42, 40 (2021). https://doi.org/10.1007/s10765-020-02768-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02768-8

Keywords

Navigation