Skip to main content

Advertisement

Log in

Dietary berberine can ameliorate glucose metabolism disorder of Megalobrama amblycephala exposed to a high-carbohydrate diet

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Blunt snout bream (Megalobrama amblycephala) were randomly assigned into three diets: normal-carbohydrate diet (NCD, 30% carbohydrate, w/w), high-carbohydrate diet (HCD, 43% carbohydrate), and HCB (HCD supplemented with 50 mg/kg berberine (BBR)). After 10 weeks’ feeding trial, the results showed that higher levels of plasma glucose, triglyceride, and total cholesterol were observed in HCD-fed fish than in NCD-fed fish, while HCB feeding significantly ameliorated this effect. Moreover, HCB feeding remarkably reversed HCD-induced hepatic glycogen and lipid contents. In insulin signaling, BBR inclusion restored HCD-induced suppression of insulin receptor substrate mRNA expression and elevation of forkhead transcription factor 1 mRNA expression. In glucose metabolism, upregulated glucose transporter 2 and glycogen synthase mRNA expressions in the HCD group were observed compared to the NCD group. However, BBR adding reduced the mRNA expressions of glycogen synthase, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase and increased the transcriptional levels of glucose transporter 2 and pyruvate kinase. In lipid metabolism, BBR supplementation could reverse downregulated hepatic carnitine palmitoyl transferase I mRNA expression and upregulated hepatic acetyl-CoA carboxylase and fatty acid synthetase mRNA expressions in the HCD group. Taken together, it demonstrates that BBR could improve glucose metabolism of this species via enhancing liver’s glycolysis and insulin signaling, while inhibiting liver’s glycogen synthesis and gluconeogenesis. It also indicates that BBR could reduce the metabolic burden of the liver by inhibiting fat synthesis and promoting lipid decomposition, and then enhance fat uptake in peripheral tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data sets supporting the results of this article are included within the article and its additional files,

References

  • Andoh T (2007) Amino acids are more important insulinotropins than glucose in a teleost fish, barfin flounder (Verasper moseri). Gen Comp Endocrinol 151:308–317

    Article  CAS  Google Scholar 

  • AOAC (1995) Official methods of analysis of official analytical chemists international, 16th edn. Association of Official Analytical Chemists, Arlington

    Google Scholar 

  • Asadi F, Hallajian A, Asadian P, Shahriari A, Pourkabir M (2009) Serum lipid, free fatty acid, and proteins in juvenile sturgeons: Acipenser persicus and Acipenser stellatus. Comp Clin Pathol 18:287–289

    Article  CAS  Google Scholar 

  • Azaza MS, Khiari N, Dhraief MN, Aloui N, Kraϊem MM, Elfeki A (2015) Growth performance, oxidative stress indices and hepatic carbohydrate metabolic enzymes activities of juvenile Nile tilapia, O reochromis niloticus L., in response to dietary starch to protein ratios. Aquac Res 46:14–27

    Article  CAS  Google Scholar 

  • Bai SC, Katya K, Yun H (2015) 7 - Additives in aquafeed: an overview. In: Davis DA (ed) Feed and feeding practices in aquaculture. Woodhead Publishing, Oxford, pp 171–202. https://doi.org/10.1016/B978-0-08-100506-4.00007-6

    Chapter  Google Scholar 

  • Cao SJ et al (2013) Berberine metabolites exhibit triglyceride-lowering effects via activation of AMP-activated protein kinase in Hep G2 cells. J Ethnopharmacol 149:576–582. https://doi.org/10.1016/j.jep.2013.07.025

    Article  CAS  PubMed  Google Scholar 

  • Chow YL, Sogame M, Sato F (2016) 13-Methylberberine, a berberine analogue with stronger anti-adipogenic effects on mouse 3T3-L1 cells. Sci Rep 6:38129. https://doi.org/10.1038/srep38129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13:2905–2927

    Article  CAS  Google Scholar 

  • El Kaissi S, Sherbeeni S (2011) Pharmacological management of type 2 diabetes mellitus: an update. Curr Diabetes Rev 7:392–405

    Article  Google Scholar 

  • Enes P, Panserat S, Kaushik S, Teles O (2009) Nutritional regulation of hepatic glucose metabolism in fish. Fish Physiol Biochem 35:519–539

    Article  CAS  Google Scholar 

  • Floch J (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    Article  Google Scholar 

  • Giorgino F, De Robertis O, Laviola L, Montrone C, Perrini S, McCowen KC, Smith RJ (2000) The sentrin-conjugating enzyme mUbc9 interacts with GLUT4 and GLUT1 glucose transporters and regulates transporter levels in skeletal muscle cells. Proc Natl Acad Sci 97:1125–1130

    Article  CAS  Google Scholar 

  • Habte Tsion HM, Ren MC, Liu B, Ge XP, Xie J, Chen RL (2016) Threonine modulates immune response, antioxidant status and gene expressions of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream (Megalobrama amblycephala). Fish Shellfish Immunol 51:189–199

    Article  CAS  Google Scholar 

  • Hansen AC, Waagbø R, Hemre GI (2015) New B vitamin recommendations in fish when fed plant-based diets. Aquac Nutr 21:507–527

    Article  CAS  Google Scholar 

  • Hemre GI, Mommsen TP, Krogdahl A (2002) Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aquac Nutr 8:175–194. https://doi.org/10.1046/j.1365-2095.2002.00200.x

    Article  CAS  Google Scholar 

  • Ilyas Z et al (2020) The effect of Berberine on weight loss in order to prevent obesity: a systematic review. Biomed Pharmacother 127:110137. https://doi.org/10.1016/j.biopha.2020.110137

    Article  CAS  PubMed  Google Scholar 

  • Jiang GZ, Zhou M, Zhang DD, Li XF, Liu WB (2018) The mechanism of action of a fat regulator: glycyrrhetinic acid (GA) stimulating fatty acid transmembrane and intracellular transport in blunt snout bream (Megalobrama amblycephala). Comp Biochem Physiol A Mol Integr Physiol 226:83–90. https://doi.org/10.1016/j.cbpa.2018.08.014

    Article  CAS  PubMed  Google Scholar 

  • Kaestner KH, Knöchel W, Martínez DE (2000) Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev 14:142–146

    CAS  PubMed  Google Scholar 

  • Kamalam BS, Medale F, Panserat S (2017) Utilisation of dietary carbohydrates in farmed fishes: new insights on influencing factors, biological limitations and future strategies. Aquaculture 467:3–27. https://doi.org/10.1016/j.aquaculture.2016.02.007

    Article  CAS  Google Scholar 

  • Kerner J, Hoppel C (2000) Fatty acid import into mitochondria. Biochimica et Biophysica Acta (BBA) 1486:1–17. https://doi.org/10.1016/S1388-1981(00)00044-5

    Article  CAS  Google Scholar 

  • Kops GJ, Burgering BM (1999) Forkhead transcription factors: new insights into protein kinase B (c-akt) signaling. J Mol Med 77:656–665

    Article  CAS  Google Scholar 

  • Lee YS et al (2006) Berberine, a natural plant product, activates AMP-activated protein linase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 55:2256–2264. https://doi.org/10.2337/db06-0006

    Article  CAS  PubMed  Google Scholar 

  • Li WL, Zheng HC, Bukuru J, De Kimpe N (2004) Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J Ethnopharmacol 92:1–21

    Article  CAS  Google Scholar 

  • Li XF, Wang Y, Liu WB, Jiang GZ, Zhu J (2013) Effects of dietary carbohydrate/lipid ratios on growth performance, body composition and glucose metabolism of fingerling blunt snout bream Megalobrama amblycephala. Aquac Nutr 19:701–708

    Article  CAS  Google Scholar 

  • Li XY, Wang JT, Han T, Hu SX, Jiang YD (2015) Effects of dietary carbohydrate level on growth and body composition of juvenile giant croaker Nibea japonica. Aquac Res 46:2851–2858

    Article  CAS  Google Scholar 

  • Li SL, Sang CY, Wang A, Zhang JC, Chen NS (2019) Effects of dietary carbohydrate sources on growth performance, glycogen accumulation, insulin signaling pathway and hepatic glucose metabolism in largemouth bass, Micropterus salmoides. Aquaculture 513:734391. https://doi.org/10.1016/j.aquaculture.2019.734391

    Article  CAS  Google Scholar 

  • Liu YT, Hao HP, Xie HG, Lai L, Wang Q, Liu CX, Wang GJ (2010) Extensive intestinal first-pass elimination and predominant hepatic distribution of berberine explain its low plasma levels in rats. Drug Metab Dispos 38:1779–1784. https://doi.org/10.1124/dmd.110.033936

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Zhang Y, Liu Y, Hou L, Li S, Tian H, Zhao T (2018) Berberine modulates gut microbiota and reduces insulin resistance via the TLR4 signaling pathway. Exp Clin Endocrinol Diabetes 126:513–520

    Article  CAS  Google Scholar 

  • Lu KL, Xu WN, Li XF, Liu WB, Wang LN, Zhang CN (2013) Hepatic triacylglycerol secretion, lipid transport and tissue lipid uptake in blunt snout bream (Megalobrama amblycephala) fed high-fat diet. Aquaculture 408:160–168

    Article  Google Scholar 

  • Lu KL, Zhang DD, Wang LN, Xu WN, Liu WB (2016) Molecular characterization of carnitine palmitoyltransferase IA in Megalobrama amblycephala and effects on its expression of feeding status and dietary lipid and berberine. Comp Biochem Physiol B Biochem Mol Biol 191:20–25. https://doi.org/10.1016/j.cbpb.2015.08.010

    Article  CAS  PubMed  Google Scholar 

  • Manning BD (2004) Balancing Akt with S6K: implications for both metabolic diseases and tumorigenesis. J Cell Biol 167:399–403

    Article  CAS  Google Scholar 

  • McNamara JR, Schaefer EJ (1987) Automated enzymatic standardized lipid analyses for plasma and lipoprotein fractions. Clin Chim Acta 166:1–8

    Article  CAS  Google Scholar 

  • Monnier VM, Vishwanath V, Frank KE, Elmets CA, Dauchot P, Kohn RR (1986) Relation between complications of type I diabetes mellitus and collagen-linked fluorescence. N Engl J Med 314:403–408

    Article  CAS  Google Scholar 

  • Moon TW (2001) Glucose intolerance in teleost fish: fact or fiction? Comp Biochem Physiol B: Biochem Mol Biol 129:243–249

    Article  CAS  Google Scholar 

  • Na Q, Zhao TY, He M, Tian C (2012) Effectiveness and safety of berberine in the treatment of type 2 diabetes: a systematic review. Chin J Evid Based Med 12:81–91

    Google Scholar 

  • Nandipati KC, Subramanian S, Agrawal DK (2017) Protein kinases: mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance. Mol Cell Biochem 426:27–45

    Article  CAS  Google Scholar 

  • Neag MA, Mocan A, Echeverría J, Pop RM, Bocsan CI, Crişan G, Buzoianu AD (2018) Berberine: botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Front Pharmacol 9. https://doi.org/10.3389/fphar.2018.00557

  • Ni YX (1988) Therapeutic effect of berberine on 60 patients with type II diabetes mellitus and experimental research. Zhong xi yi jie he za zhi 8:711

    CAS  PubMed  Google Scholar 

  • Nigam VN (1962) An enzymatic method for the determination of pyruvate phosphoenolpyruvate, 2-and 3-phosphoglyceric acids. Can J Biochem Physiol 40:836–840

    Article  CAS  Google Scholar 

  • NRC N (2011) Nutrient requirements of fish and shrimp. The National Academies Press, Washington DC

    Google Scholar 

  • Pan WJ et al (2017) Regulation mechanism of oxidative stress induced by high glucose through PI3K/Akt/Nrf2 pathway in juvenile blunt snout bream (Megalobrama amblycephala). Fish Shellfish Immunol 70:66–75. https://doi.org/10.1016/j.fsi.2017.09.005

    Article  CAS  PubMed  Google Scholar 

  • Pan HJ, Li Z, Xie J, Liu D, Wang H, Yu D, Zhang Q, Hu Z, Shi C (2019) Berberine influences blood glucose via modulating the gut microbiome in grass carp. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.01066

  • Panserat S et al (2000) Hepatic glucokinase is induced by dietary carbohydrates in rainbow trout, gilthead seabream, and common carp. Am J Physiol Regul Integr Comp Physiol 278:R1164–R1170. https://doi.org/10.1152/ajpregu.2000.278.5.R1164

    Article  CAS  PubMed  Google Scholar 

  • Peres H, Oliva Teles A (1999) Influence of temperature on protein utilization in juvenile European seabass (Dicentrarchus labrax). Aquaculture 170:337–348. https://doi.org/10.1016/S0044-8486(98)00422-0

    Article  CAS  Google Scholar 

  • Petersen MC, Vatner DF, Shulman GI (2017) Regulation of hepatic glucose metabolism in health and disease. Nat Rev Endocrinol 13:572–587

    Article  CAS  Google Scholar 

  • Pfleiderer G, Bergmeyer H (1974) Glycogen: determination with amyloglucosidase. Methods Enzymat Analy 2:59–62

    Google Scholar 

  • Prisingkorn W, Prathomya P, Jakovlic I, Liu H, Zhao YH, Wang WM (2017) Transcriptomics, metabolomics and histology indicate that high-carbohydrate diet negatively affects the liver health of blunt snout bream (Megalobrama amblycephala). BMC Genomics 18:856. https://doi.org/10.1186/s12864-017-4246-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian Y, Li XF, Zhang DD, Cai DS, Tian HY, Liu WB (2015) Effects of dietary pantothenic acid on growth, intestinal function, anti-oxidative status and fatty acids synthesis of juvenile blunt snout bream Megalobrama amblycephala. PLoS One 10:e0119518. https://doi.org/10.1371/journal.pone.0119518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren MC, Ai QH, Mai KS, Ma HM, Wang XJ (2011) Effect of dietary carbohydrate level on growth performance, body composition, apparent digestibility coefficient and digestive enzyme activities of juvenile cobia, Rachycentron canadum L. Aquac Res 42:1467–1475. https://doi.org/10.1111/j.1365-2109.2010.02739.x

    Article  CAS  Google Scholar 

  • Ren MC et al (2013) Dietary arginine requirement of juvenile blunt snout bream, Megalobrama amblycephala. Aquaculture 414-415:229–234. https://doi.org/10.1016/j.aquaculture.2013.08.021

    Article  CAS  Google Scholar 

  • Ren MC et al (2015) Effects of dietary carbohydrate source on growth performance, diet digestibility and liver glucose enzyme activity in blunt snout bream, Megalobrama amblycephala. Aquaculture 438:75–81. https://doi.org/10.1016/j.aquaculture.2015.01.008

    Article  CAS  Google Scholar 

  • Richard N, Kaushik S, Larroquet L, Panserat S, Corraze G (2006) Replacing dietary fish oil by vegetable oils has little effect on lipogenesis, lipid transport and tissue lipid uptake in rainbow trout (Oncorhynchus mykiss). Brit J Nutr 96:299–309

    Article  CAS  Google Scholar 

  • Shi HJ et al (2018) Resveratrol improves the energy sensing and glycolipid metabolism of blunt snout bream Megalobrama amblycephala fed high-carbohydrate diets by activating the AMPK-SIRT1-PGC-1alpha network. Front Physiol 9:1258. https://doi.org/10.3389/fphys.2018.01258

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi HJ, Li XF, Xu C, Zhang DD, Zhang L, Xia SL, Liu WB (2020) Nicotinamide improves the growth performance, intermediary metabolism and glucose homeostasis of blunt snout bream Megalobrama amblycephala fed high-carbohydrate diets. Aquac Nutr. https://doi.org/10.1111/anu.13088

  • Tessari P, Coracina A, Cosma A, Tiengo A (2009) Hepatic lipid metabolism and non-alcoholic fatty liver disease. Nutr Metab Cardiovas 19:291–302

    Article  CAS  Google Scholar 

  • Tillhon M, Guamán Ortiz LM, Lombardi P, Scovassi AI (2012) Berberine: new perspectives for old remedies. Biochem Pharmacol 84:1260–1267. https://doi.org/10.1016/j.bcp.2012.07.018

    Article  CAS  PubMed  Google Scholar 

  • Wang ZQ et al (2008) Facilitating effects of berberine on rat pancreatic islets through modulating hepatic nuclear factor 4 alpha expression and glucokinase activity. World J Gastroenterol: WJG 14:6004

    Article  CAS  Google Scholar 

  • Wang JT et al (2016) Effects of different dietary carbohydrate levels on growth, feed utilization and body composition of juvenile grouper Epinephelus akaara. Aquaculture 459:143–147. https://doi.org/10.1016/j.aquaculture.2016.03.034

    Article  CAS  Google Scholar 

  • Watanabe T (2002) Strategies for further development of aquatic feeds. Fish Sci 68:242–252. https://doi.org/10.1046/j.1444-2906.2002.00418.x

    Article  CAS  Google Scholar 

  • Wei J, Wu JD, Jiag J (2004) Clinical study on improvement of type II diabetes mellitus complicated with fatty liver treated by berberine. Chin J Integ Tradition West Med Liver Dis 6:334–336

    Google Scholar 

  • Wilson RP (1994) Utilization of dietary carbohydrate by fish. Aquaculture 124:67–80. https://doi.org/10.1016/0044-8486(94)90363-8

    Article  CAS  Google Scholar 

  • Xia XA et al (2011) Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis. PLoS One 6:e16556–e16556. https://doi.org/10.1371/journal.pone.0016556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie P, Zhou H, Gao Y (2005) The clinical efficacy of berberine in treatment of type 2 diabetes mellitus. Chin J Clin Healthcare 8:402–403

    Google Scholar 

  • Xu C, Liu WB, Dai YJ, Jiang GZ, Wang BK, Li XF (2017) Long-term administration of benfotiamine benefits the glucose homeostasis of juvenile blunt snout bream Megalobrama amblycephala fed a high-carbohydrate diet. Aquaculture 470:74–83. https://doi.org/10.1016/j.aquaculture.2016.12.025

    Article  CAS  Google Scholar 

  • Xu C, Liu WB, Zhang DD, Cao XF, Shi HJ, Li XF (2018) Interactions between dietary carbohydrate and metformin: implications on energy sensing, insulin signaling pathway, glycolipid metabolism and glucose tolerance in blunt snout bream Megalobrama amblycephala. Aquaculture 483:183–195. https://doi.org/10.1016/j.aquaculture.2017.10.022

    Article  CAS  Google Scholar 

  • Yan HM, Xia MF, Wang Y, Chang XX, Yao XZ, Rao SX, Zeng MS, Tu YF, Feng R, Jia WP, Liu J, Deng W, Jiang JD, Gao X (2015) Efficacy of berberine in patients with non-alcoholic fatty liver disease. PLoS One 10:e0134172. https://doi.org/10.1371/journal.pone.0134172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin J, Gao Z, Liu D, Liu Z, Ye J (2008) Berberine improves glucose metabolism through induction of glycolysis. Am J Phys Endocrinol Metab 294:E148–E156. https://doi.org/10.1152/ajpendo.00211.2007

    Article  CAS  Google Scholar 

  • Zhang WW et al (2006) FoxO1 regulates multiple metabolic pathways in the liver-effects on gluconeogenic, glycolytic, and lipogenic gene expression. J Biol Chem 281:10105–10117. https://doi.org/10.1074/jbc.M600272200

    Article  CAS  PubMed  Google Scholar 

  • Zhang YF et al (2008) Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. J Clin Endocrinol Metabol 93:2559–2565. https://doi.org/10.1210/jc.2007-2404

    Article  CAS  Google Scholar 

  • Zhang YH et al (2015) Berberine reverses abnormal expression of L-type pyruvate kinase by DNA demethylation and histone acetylation in the livers of the non-alcoholic fatty disease rat. Int J Clin Exp Med 8:7535–7543

    PubMed  PubMed Central  Google Scholar 

  • Zhang YP et al (2018) Fucoxanthin ameliorates hyperglycemia, hyperlipidemia and insulin resistance in diabetic mice partially through IRS-1/PI3K/Akt and AMPK pathways. J Funct Foods 48:515–524. https://doi.org/10.1016/j.jff.2018.07.048

    Article  CAS  Google Scholar 

  • Zhou JY, Zhou SW, Zhang KB, Tang JL, Guang LX, Ying Y, Xu Y, Zhang L, Li DD (2008) Chronic effects of berberine on blood, liver glucolipid metabolism and liver PPARs expression in diabetic hyperlipidemic rats. Biol Pharm Bull 31:1169–1176

    Article  CAS  Google Scholar 

  • Zhou PP, Wang MQ, Xie FJ, Deng DF, Zhou QC (2016) Effects of dietary carbohydrate to lipid ratios on growth performance, digestive enzyme and hepatic carbohydrate metabolic enzyme activities of large yellow croaker (Larmichthys crocea). Aquaculture 452:45–51. https://doi.org/10.1016/j.aquaculture.2015.10.010

    Article  CAS  Google Scholar 

  • Zhou CP, Ge XP, Liu B, Xie J, Chen RL, Miao LH, Ren MC (2017) Comparative study on the effect of high dietary carbohydrate on the growth performance, body composition, serum physiological responses and hepatic antioxidant abilities in Wuchang bream (Megalobrama amblycephala) and black carp (Mylopharyngodon piceus Richardson, 1846). Aquac Res 48:1020–1030. https://doi.org/10.1111/are.12944

    Article  CAS  Google Scholar 

  • Zhou WH, Rahimnejad S, Lu KL, Wang LN, Liu WB (2019) Effects of berberine on growth, liver histology, and expression of lipid-related genes in blunt snout bream (Megalobrama amblycephala) fed high-fat diets. Fish Physiol Biochem 45:83–91

    Article  CAS  Google Scholar 

Download references

Code availability

Not applicable.

Funding

This study was supported by the National Natural Science Foundation of China (No. 31972801) and the earmarked fund for China Agriculture Research System (CARS-45-14).

Author information

Authors and Affiliations

Authors

Contributions

Chang He: writing—original draft, writing—reviewing and editing, software, data curation, investigation, and resources.

Xiaoyan Jia: software, conceptualization, and data curation.

Li Zhang: supervision and conceptualization.

Fan Gao: writing—reviewing and editing.

Weibo Jiang: investigation and resources.

Chuang Wen: investigation and resources.

Cheng Chi: software and methodology.

Xiangfei Li: conceptualization.

Guangzhen Jiang: conceptualization.

Haifeng Mi: feed formulation and consultation.

Wenbin Liu: funding acquisition and conceptualization.

Dingdong Zhang: funding acquisition, project administration, supervision, and writing—reviewing and editing.

Corresponding author

Correspondence to Dingdong Zhang.

Ethics declarations

Ethics approval and consent to participate

All experimental procedures for animal care and handling in this study were approved by the Institutional Animal Care and Use Committee of Nanjing Agricultural University (Permit number: IACUC2020174).

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, C., Jia, X., Zhang, L. et al. Dietary berberine can ameliorate glucose metabolism disorder of Megalobrama amblycephala exposed to a high-carbohydrate diet. Fish Physiol Biochem 47, 499–513 (2021). https://doi.org/10.1007/s10695-021-00927-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-021-00927-8

Keywords

Navigation