Skip to main content
Log in

Temporal analysis of the microbiota involved in the anaerobic degradation of sugarcane vinasse in a full-scale methanogenic UASB reactor

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The treatment of sugarcane vinasse is still a challenge to develop a sustainable bioethanol production. Anaerobic digestion (AD) is the most promising treatment of vinasse since energy in the form of biogas can be recovered. The aim of this work was to understand the dynamics of the microbial community in a 100-m3 upflow anaerobic sludge blanket (UASB) methanogenic reactor at start-up and during two periods of bioethanol production. An inter-harvest period in which the reactor was not fed was also studied. Metabarcoding analysis of the V4 region of the 16S rRNA gene showed that Firmicutes, Synergistetes, Chloroflexi, and Proteobacteria were the dominant phyla. Firmicutes was abundant, suggesting that this group plays a specific role in the treatment of vinasse. The inoculum adaptation to vinasse was correlated with the microbiota diversity and dynamics. The microbiota diversity was higher during the first harvest and reflected the initial microbial composition. During the second harvest, the increasing organic loading rate (OLR) and the adaptation to the new effluent selected a less diverse community which produced the biogas in the reactor. The qPCR of the mcrA gene and methanogenic activity tests showed that the abundance of methanogens increased over time and remained stable even after the stop period. This work shows the plasticity of the microbial community, which adapted its structure to the changes in the feed and persisted during starvation periods in the reactor. A time-series of microbiological information is necessary to a comprehensive understanding of full-scale reactor maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AD:

Anaerobic digestion

ASV:

Amplicon sequence variant

COD:

Chemical oxygen demand

HRT:

Hydraulic retention time

OLR:

Organic loading rate

SMA:

Specific methanogenic activity

UASB:

Upflow anaerobic sludge blanket

VSS:

Volatile suspended solids

References

  1. Wilkie AC, Riedesel KJ, Owens JM (2000) Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass Bioenergy 19:63–102. https://doi.org/10.1016/S0961-9534(00)00017-9

    Article  Google Scholar 

  2. Fuess LT, Garcia ML, Zaiat M (2018) Seasonal characterization of sugarcane vinasse: assessing environmental impacts from fertirrigation and the bioenergy recovery potential through biodigestion. Sci Total Environ 634:29–40. https://doi.org/10.1016/j.scitotenv.2018.03.326

    Article  Google Scholar 

  3. Espana-Gamboa E, Mijangos-Cortes J, Barahona-Perez L, Dominguez-Maldonado J, Hernandez-Zarate G, Alzate-Gaviria L (2011) Vinasses: characterization and treatments. Waste Manag Res 29:1235–1250. https://doi.org/10.1177/0734242X10387313

    Article  Google Scholar 

  4. Parsaee M, Kiani Deh Kiani M, Karimi K (2019) A review of biogas production from sugarcane vinasse. Biomass Bioenergy 122:117–125. https://doi.org/10.1016/j.biombioe.2019.01.034

    Article  Google Scholar 

  5. Parnaudeau V, Condom N, Oliver R, Cazevieille P, Recous S (2008) Vinasse organic matter quality and mineralization potential, as influenced by raw material, fermentation and concentration processes. Bioresour Technol 99:1553–1562. https://doi.org/10.1016/j.biortech.2007.04.012

    Article  Google Scholar 

  6. Moraes BS, Zaiat M, Bonomi A (2015) Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: challenges and perspectives. Renew Sust Energ Rev 44:888–903. https://doi.org/10.1016/j.rser.2015.01.023

    Article  Google Scholar 

  7. Bordonal R d O, Carvalho JLN, Lal R, de Figueiredo EB, de Oliveira BG, La Scala N (2018) Sustainability of sugarcane production in Brazil. A review. Agron Sustain Dev 38:13. https://doi.org/10.1007/s13593-018-0490-x

    Article  Google Scholar 

  8. Christofoletti CA, Escher JP, Correia JE, Marinho JFU, Fontanetti CS (2013) Sugarcane vinasse: environmental implications of its use. Waste Manag 33:2752–2761. https://doi.org/10.1016/j.wasman.2013.09.005

    Article  Google Scholar 

  9. Fuess LT, Garcia ML, Christofoletti CA, Escher JP, Correia JE, Marinho JFU, Fontanetti CS (2015) Bioenergy from stillage anaerobic digestion to enhance the energy balance ratio of ethanol production. J Environ Manag 162:102–114. https://doi.org/10.1016/j.jenvman.2015.07.046

    Article  Google Scholar 

  10. van Lier JB, van der Zee FP, Frijters CTMJ, Ersahin ME (2015) Celebrating 40 years anaerobic sludge bed reactors for industrial wastewater treatment. Rev Environ Sci Biotechnol 14:681–702. https://doi.org/10.1007/s11157-015-9375-5

    Article  Google Scholar 

  11. España-Gamboa EI, Mijangos-Cortés JO, Hernández-Zárate G, Maldonado JAD, Alzate-Gaviria LM (2012) Methane production by treating vinasses from hydrous ethanol using a modified UASB reactor. Biotechnol Biofuels 5:82. https://doi.org/10.1186/1754-6834-5-82

    Article  Google Scholar 

  12. Cassman NA, Lourenço KS, do Carmo JB, Cantarella H, Kuramae EE (2018) Genome-resolved metagenomics of sugarcane vinasse bacteria. Biotechnol Biofuels 11:48. https://doi.org/10.1186/s13068-018-1036-9

    Article  Google Scholar 

  13. Martínez MA, Romero H, Perotti NI (2014) Two amplicon sequencing strategies revealed different facets of the prokaryotic community associated with the anaerobic treatment of vinasses from ethanol distilleries. Bioresour Technol 153:388–392. https://doi.org/10.1016/j.biortech.2013.12.030

    Article  Google Scholar 

  14. Jiménez J, Barrera EL, De Vrieze J, Boon N, DeMeester S, Spanjers H, Romero OR, Dewulf J (2018) Microbial community dynamics reflect reactor stability during the anaerobic digestion of a very high strength and sulfate-rich vinasse. J Chem Technol Biotechnol 93:975–984. https://doi.org/10.1002/jctb.5449

    Article  Google Scholar 

  15. van Lier JB, Mahmoud NZG (2011) Biological wastewater treatment: principles, modelling and design. In: Henze M, van Loosdrecht MCM, Ekama GA, Brdjanovic D (eds) Biological wastewater treatment: principles, modelling and design, 2011th edn. IWA Publishing, Glasgow, p 416

  16. López I, Borzacconi L, Passeggi M (2018) Anaerobic treatment of sugar cane vinasse: treatability and real-scale operation. J Chem Technol Biotechnol 93:1320–1327. https://doi.org/10.1002/jctb.5493

    Article  Google Scholar 

  17. APHA (2012) Standard methods for the examination of water and wastewater, 22nd ed. American Water Works Association (AWWA) and Water Environment Federation (WEF), Washington, D.C

  18. Claesson MJ, O’Sullivan O, Wang Q, Nikkilä J, Marchesi JR, Smidt H, de Vos WM, Ross RP, O’Toole PW (2009) Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS One 4:e6669. https://doi.org/10.1371/journal.pone.0006669

    Article  Google Scholar 

  19. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet C, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope E, Da Silva R, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley G, Janssen S, Jarmusch AK, Jiang L, Kaehler B, Bin KK, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, MGI L, Lee J, Ley R, Liu Y-X, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton J, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS II, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2018) QIIME 2: reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Prepr 6:e27295v2. https://doi.org/10.7287/peerj.preprints.27295v2

    Article  Google Scholar 

  20. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

    Article  Google Scholar 

  21. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066. https://doi.org/10.1093/nar/gkf436

    Article  Google Scholar 

  22. Price MN, Dehal PS, Arkin AP (2010) FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 5:1–10. https://doi.org/10.1371/journal.pone.0009490

    Article  Google Scholar 

  23. Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Gregory Caporaso J (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:90. https://doi.org/10.1186/s40168-018-0470-z

    Article  Google Scholar 

  24. Denman SE, Tomkins NW, McSweeney CS (2007) Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol Ecol 62:313–322. https://doi.org/10.1111/j.1574-6941.2007.00394.x

    Article  Google Scholar 

  25. Soto M, Méndez R, Lema JM (1993) Methanogenic and non-methanogenic activity tests. Theoretical basis and experimental set up. Water Res 27:1361–1376. https://doi.org/10.1016/0043-1354(93)90224-6

    Article  Google Scholar 

  26. Nelson MC, Morrison M, Yu Z (2011) A meta-analysis of the microbial diversity observed in anaerobic digesters. Bioresour Technol 102:3730–3739. https://doi.org/10.1016/j.biortech.2010.11.119

    Article  Google Scholar 

  27. Campanaro S, Treu L, Rodriguez-R LM, Kovalovszki A, Ziels RM, Maus I, Zhu X, Kougias PG, Basile A, Luo G, Schlüter A, Konstantinidis KT, Angelidaki I (2020) New insights from the biogas microbiome by comprehensive genome-resolved metagenomics of nearly 1600 species originating from multiple anaerobic digesters. Biotechnol Biofuels 13:25. https://doi.org/10.1186/s13068-020-01679-y

    Article  Google Scholar 

  28. Carballa M, Regueiro L, Lema JM (2015) Microbial management of anaerobic digestion: exploiting the microbiome-functionality nexus. Curr Opin Biotechnol 33:103–111. https://doi.org/10.1016/j.copbio.2015.01.008

    Article  Google Scholar 

  29. Ferguson RMW, Coulon F, Villa R (2018) Understanding microbial ecology can help improve biogas production in AD. Sci Total Environ 642:754–763. https://doi.org/10.1016/j.scitotenv.2018.06.007

    Article  Google Scholar 

  30. Fernández A, Huang SSS, Xing JHR, Criddle C, Tiedje J (1999) How stable is stable? Function versus community composition. Appl Environ Microbiol 65:3697–3704

    Article  Google Scholar 

  31. Werner JJ, Knights D, Garcia ML, Scalfone NB, Smith S, Yarasheski K, Cummings TA, Beers AR, Knight R, Angenent LT (2011) Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proc Natl Acad Sci 108:4158–4163. https://doi.org/10.1073/pnas.1015676108

    Article  Google Scholar 

  32. Lucas R, Kuchenbuch A, Fetzer I, Harms H, Kleinsteuber S (2015) Long-term monitoring reveals stable and remarkably similar microbial communities in parallel full-scale biogas reactors digesting energy crops. FEMS Microbiol Ecol 91:fiv004

    Article  Google Scholar 

  33. Nobu MK, Narihiro T, Rinke C, Kamagata Y, Tringe SG, Woyke T, Liu W-T (2015) Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor. Isme J 9:1710–1722

    Article  Google Scholar 

  34. Lynch MDJ, Neufeld JD (2015) Ecology and exploration of the rare biosphere. Nat Rev Microbiol 13:217–229. https://doi.org/10.1038/nrmicro3400

    Article  Google Scholar 

  35. Silva AFR, Magalhães NC, Cunha PVM, Amaral MCS, Koch K (2020) Influence of COD/SO42− ratio on vinasse treatment performance by two-stage anaerobic membrane bioreactor. J Environ Manag 259:110034. https://doi.org/10.1016/j.jenvman.2019.110034

    Article  Google Scholar 

  36. Moestedt J, Nilsson Påledal S, Schnürer A (2013) The effect of substrate and operational parameters on the abundance of sulphate-reducing bacteria in industrial anaerobic biogas digesters. Bioresour Technol 132:327–332. https://doi.org/10.1016/j.biortech.2013.01.043

    Article  Google Scholar 

  37. Campanaro S, Treu L, Kougias PG, Zhu X, Angelidaki I (2018) Taxonomy of anaerobic digestion microbiome reveals biases associated with the applied high throughput sequencing strategies. Sci Rep 8:1926. https://doi.org/10.1038/s41598-018-20414-0

    Article  Google Scholar 

  38. Pinto AJ, Raskin L (2012) PCR biases distort bacterial and archaeal community structure in pyrosequencing datasets. PLoS One 7:e43093. https://doi.org/10.1371/journal.pone.0043093

    Article  Google Scholar 

  39. Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci 105:11512–11519. https://doi.org/10.1073/pnas.0801925105

    Article  Google Scholar 

  40. Petriglieri F, Nierychlo M, Nielsen PH, McIlroy SJ (2018) In situ visualisation of the abundant Chloroflexi populations in full-scale anaerobic digesters and the fate of immigrating species. PLoS One 13:e0206255. https://doi.org/10.1371/journal.pone.0206255

    Article  Google Scholar 

  41. Bovio P, Cabezas A, Etchebehere C (2019) Preliminary analysis of Chloroflexi populations in full-scale UASB methanogenic reactors. J Appl Microbiol 126:667–683. https://doi.org/10.1111/jam.14115

    Article  Google Scholar 

  42. Mei R, Nobu MK, Liu W (2020) Identifying anaerobic amino acids degraders through the comparison of short-term and long-term enrichments. Environ Microbiol Rep 12:173–184. https://doi.org/10.1111/1758-2229.12821

    Article  Google Scholar 

  43. Moreda IL (2016) The potential of biogas production in Uruguay. Renew Sust Energ Rev 54:1580–1591. https://doi.org/10.1016/j.rser.2015.10.099

    Article  Google Scholar 

Download references

Funding

This work and the PhD fellowship of Cecilia Callejas were supported by the national agency for innovation and research (ANII). The reactor was constructed and operated by local scientific grants (ANII FSE1 and ALUR-ANCAP). CE, IL, and LB were funded by ANII-SNI program.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Cecilia Callejas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 246 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Callejas, C., López, I., Bovio-Winkler, P. et al. Temporal analysis of the microbiota involved in the anaerobic degradation of sugarcane vinasse in a full-scale methanogenic UASB reactor. Biomass Conv. Bioref. 12, 3887–3897 (2022). https://doi.org/10.1007/s13399-021-01281-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01281-8

Keywords

Navigation