Skip to main content
Log in

Second-order schemes for axisymmetric Navier–Stokes–Brinkman and transport equations modelling water filters

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Soil-based water filtering devices can be described by models of viscous flow in porous media coupled with an advection–diffusion–reaction system modelling the transport of distinct contaminant species within water, and being susceptible to adsorption in the medium that represents soil. Such models are analysed mathematically, and suitable numerical methods for their approximate solution are designed. The governing equations are the Navier–Stokes–Brinkman equations for the flow of the fluid through a porous medium coupled with a convection-diffusion equation for the transport of the contaminants plus a system of ordinary differential equations accounting for the degradation of the adsorption properties of each contaminant. These equations are written in meridional axisymmetric form and the corresponding weak formulation adopts a mixed-primal structure. A second-order, (axisymmetric) divergence-conforming discretisation of this problem is introduced and the solvability, stability, and spatio-temporal convergence of the numerical method are analysed. Some numerical examples illustrate the main features of the problem and the properties of the numerical scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Agroum, R., Bernardi, C., Satouri, J.: Spectral discretization of the time-dependent Navier–Stokes problem coupled with the heat equation. Appl. Math. Comput. 268, 59–82 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Aldbaissy, R., Hecht, F., Mansour, G., Sayah, T.: A full discretisation of the time-dependent Boussinesq (buoyancy) model with nonlinear viscosity. Calcolo 55(44), 1–29 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, A., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS project version 1.5. Arch. Numer. Softw. 3(100), 9–23 (2015)

    Google Scholar 

  4. Amara, M., Capatina-Papaghiuc, D., Denel, B., Terpolilli, P.: Mixed finite element approximation for a coupled petroleum reservoir model. ESAIM Math. Model. Numer. Anal. 39, 349–376 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anaya, V., Mora, D., Reales, C., Ruiz-Baier, R.: Stabilized mixed approximation of axisymmetric Brinkman flows. ESAIM Math. Model. Numer. Anal. 49, 855–874 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Anaya, V., Mora, D., Reales, C., Ruiz-Baier, R.: Mixed methods for a stream-function-vorticity formulation of the axisymmetric Brinkman equations. J. Sci. Comput. 71, 348–364 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Anaya, V., Mora, D., Reales, C., Ruiz-Baier, R.: A vorticity-pressure finite element formulation for the Brinkman-coupled problem. Numer. Methods Partial Differ. Equ. 35, 528–544 (2019)

    Article  MATH  Google Scholar 

  8. Aouadi, S.M., Bernardi, C., Satouri, J.: Mortar spectral element discretization of the Stokes problem in axisymmetric domains. Numer. Methods Partial Differ. Equ. 30, 44–73 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2001/02)

  10. Assous, F., Ciarlet, P., Labrunie, S.: Theoretical tools to solve the axisymmetric Maxwell equations. Math. Methods Appl. Sci. 25, 49–78 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Belhachmi, Z., Bernardi, C., Deparis, S.: Weighted Clément operator and application to the finite element discretization of the axisymmetric Stokes problem. Numer. Math. 105, 217–247 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Belhachmi, Z., Bernardi, C., Deparis, S., Hecht, F.: An efficient discretization of the Navier–Stokes equations in an axisymmetric domain. Part 1: The discrete problem and its numerical analysis. J. Sci. Comput. 27, 97–110 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bernardi, C., Dauge, M., Maday, Y.: Spectral methods for axisymmetric domains. In: Series in Applied Mathematics. Gauthier-Villars, North Holland, Paris, Amsterdam (1999)

  14. Bernardi, C., Chorfi, N.: Spectral discretization of the vorticity, velocity, and pressure formulation of the Stokes problem. SIAM J. Numer. Anal. 44, 826–850 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brezzi, F., Douglas, J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47, 217–235 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bürger, R., Ruiz-Baier, R., Torres, H.: A stabilized finite volume element formulation for sedimentation-consolidation processes. SIAM J. Sci. Comput. 34, B265–B289 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bürger, R., Kumar, S., Ruiz-Baier, R.: Discontinuous finite volume element discretization for coupled flow-transport problems arising in models of sedimentation. J. Comput. Phys. 299, 446–471 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bürger, R., Kenettinkara, S.K., Ruiz-Baier, R., Torres, H.: Coupling of discontinuous Galerkin schemes for viscous flow in porous media with adsorption. SIAM J. Sci. Comput. 40, B637–B662 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bürger, R., Méndez, P.E., Ruiz-Baier, R.: Convergence of H(div)-conforming schemes for a new model of sedimentation in circular clarifiers with a rotating rake. Comput. Methods Appl. Mech. Eng. 367, 113130 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bürger, R., Méndez, P.E., Ruiz-Baier, R.: On \({\varvec {H}}({\rm div})\)-conforming methods for double-diffusion equations in porous media. SIAM J. Numer. Anal. 57, 1318–1343 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cardillo, L., Corsini, A., Delibra, G., Rispoli, F., Tezduyar, T.E.: Flow analysis of a wave-energy air turbine with the SUPG/PSPG stabilization and Discontinuity-Capturing Directional Dissipation. Comput. Fluids 141, 184–190 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, W., Liu, Y., Wang, C., Wise, S.M.: Convergence analysis of a fully discrete finite difference scheme for the Cahn–Hilliard–Hele–Shaw equation. Math. Comput. 85(301), 2231–2257 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Çıbık, A., Kaya, S.: Finite element analysis of a projection-based stabilization method for the Darcy–Brinkman equations in double-diffusive convection. Appl. Numer. Math. 64, 35–49 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier–Stokes equations. Math. Comput. 74, 1067–1095 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cui, W., Gawecka, K.A., Potts, D.M., Taborda, D.M.G., Zdravković, L.: A Petrov–Galerkin finite element method for 2D transient and steady state highly advective flows in porous media. Comput. Geotech. 100, 158–173 (2018)

    Article  Google Scholar 

  26. D’Elía, J., Nigro, N., Storti, M.: Numerical simulations of axisymmetric inertial waves in a rotating sphere by finite elements. Int. J. Comput. Fluid Dyn. 20, 673–685 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Series Mathématiques et Applications. Springer, Berlin (2011)

    Google Scholar 

  28. Diegel, A.E., Wang, C., Wang, X., Wise, S.M.: Convergence analysis and error estimates for a second order accurate finite element method for the Cahn–Hilliard–Navier–Stokes system. Numer. Math. 137, 495–534 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Durkish, E.T.: A finite element formulation for axisymmetric swirling flows with application to fuel slosh. M.Sc. Thesis, Clarkson University (2006)

  30. Ervin, V.J.: Approximation of axisymmetric Darcy flow using mixed finite element methods. SIAM J. Numer. Anal. 51, 1421–1442 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ervin, V.J.: Approximation of coupled Stokes–Darcy flow in an axisymmetric domain. Comput. Methods Appl. Mech. Eng. 258, 96–108 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Feng, X.: Fully discrete finite element approximations of the Navier–Stokes–Cahn–Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44, 1049–1072 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  34. Goyeau, B., Songbe, J.P., Gobin, D.: Numerical study of double-diffusive natural convection in a porous cavity using the Darcy–Brinkman formulation. Int. J. Heat Mass Transf. 39, 1363–1378 (1996)

    Article  MATH  Google Scholar 

  35. Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195, 6011–6045 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hedwig, M., Schröder, P.W.: A grad-div stabilized discontinuous Galerkin based thermal optimization of sorption processes via phase change materials. Technical report 5, Institut für Numerische und Angewandte Mathematik, Georg-August-Universität Göttingen (2015)

  37. Hintermueller, M., Hinze, M., Kahle, C.: An adaptive finite element Moreau–Yosida-based solver for a coupled Cahn–Hilliard/Navier–Stokes system. J. Comput. Phys. 235, 810–827 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hughes, T.J.R.: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127, 387–401 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kagei, Y., Nishida, T.: On Chorin’s method for stationary solutions of the Oberbeck–Boussinesq equation. J. Math. Fluid Mech. 19, 345–365 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Karakashian, O.A., Jureidini, W.N.: Nonconforming finite element method for the stationary Navier–Stokes equations. SIAM J. Numer. Anal. 35, 93–120 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Könnö, J., Stenberg, R.: \({\varvec {H}}({\rm div})\)-conforming finite elements for the Brinkman problem. Math. Models Methods Appl. Sci. 21, 2227–2248 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kufner, A.: Weighted Sobolev spaces, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], vol. 31. BSB B.G. Teubner Verlagsgesellschaft, Leipzig (1980)

    Google Scholar 

  43. Lenarda, P., Paggi, M., Ruiz-Baier, R.: Partitioned coupling of advection–diffusion–reaction systems and Brinkman flows. J. Comput. Phys. 344, 281–302 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Maiti, A., Sharma, H., Basu, J.K., De, S.: Modeling of arsenic adsorption kinetics of synthetic and contaminated groundwater on natural laterite. J. Hazard. Mater. 172, 928–934 (2009)

    Article  Google Scholar 

  45. Maiti, A., Basu, J.K., De, S.: Development of a treated laterite for arsenic adsorption: effects of treatment parameters. Ind. Eng. Chem. Res. 49, 4873–4886 (2010)

    Article  Google Scholar 

  46. Mazzaferro, G.M., Ferro, S.P., Goldschmidt, M.B.: An algorithm for rotating axisymmetric flows: model, validation and industrial applications. Int. J. Numer. Methods Fluids 48, 1101–1121 (2005)

    Article  MATH  Google Scholar 

  47. Mercier, B., Raugel, G.: Resolution d’un problème aux limites dans un ouvert axisymétrique par éléments finis en \(r\), \(z\) et séries de Fourier en \(t\). RAIRO Anal. Numér. 16, 405–461 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  48. Mondal, R., Mondal, S., Kurada, K.V., Bhattacharjee, S., Sengupta, S., Mondal, M., Karmakar, S., De, S., Griffiths, I.M.: Modelling the transport and adsorption dynamics of arsenic in a soil bed filter. Chem. Eng. Sci. 210, 115205 (2019)

    Article  Google Scholar 

  49. Nochetto, R., Pyo, J.-H.: The Gauge–Uzawa finite element method part II: the Boussinesq equations. Math. Models Methods Appl. Sci. 16, 1599–1626 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ovalle, E., Araya, R., Concha, F.: The role of wave propagation in hydrocyclone operations I: An axisymmetric streamfunction formulation for a conical hydrocyclone. Chem. Eng. J. 111, 205–211 (2005)

    Article  Google Scholar 

  51. Pyo, J.-H.: Fully discrete finite element approximation for the stabilized Gauge–Uzawa method to solve the Boussinesq equations. J. Appl. Math. 4, 372906 (2013)

    MathSciNet  MATH  Google Scholar 

  52. Rana, C., Mishra, M., De Wit, A.: Effect of anti-Langmuir adsorption on spreading in porous media. Europhys. Lett. 124, 64003 (2019)

    Article  Google Scholar 

  53. Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  54. Shao, Q., Fahs, M., Younes, A., Makradi, A., Mara, T.: A new benchmark reference solution for double-diffusive convection in a heterogeneous porous medium. Numer. Heat Transf. B 70, 373–392 (2016)

    Article  Google Scholar 

  55. Schröder, P.W., Lehrenfeld, C., Linke, A., Lube, G.: Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier–Stokes equations. SeMA J. 75, 629–653 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  56. Tang, L.Q., Liu, D., Zhao, F., Tang, G.: Combined heat and moisture convective transport in a partial enclosure with multiple free ports. Appl. Therm. Eng. 30, 977–990 (2010)

    Article  Google Scholar 

  57. Tezduyar, T.E.: Computation of moving boundaries and interfaces and stabilization parameters. Int. J. Numer. Methods Fluids 43, 555–575 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  58. Turesson, B.O.: Nonlinear Potential Theory and Weighted Sobolev Spaces. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  59. Vanson, J.-M., Boutin, A., Klotz, M., Coudert, F.-X.: Transport and adsorption under liquid flow: the role of pore geometry. Soft Matter 13, 875–885 (2017)

    Article  Google Scholar 

  60. Woodfield, J., Alvarez, M., Gómez-Vargas, B., Ruiz-Baier, R.: Stability and finite element approximation of phase change models for natural convection in porous media. J. Comput. Appl. Math. 360, 117–137 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  61. Zhuang, Y.J., Yu, H.Z., Zhu, Q.Y.: A thermal non-equilibrium model for 3D double diffusive convection of power-law fluids with chemical reaction in the porous medium. Int. J. Heat Mass Transf. 115, 670–694 (2017)

    Article  Google Scholar 

  62. Zienkiewicz, O.C., Taylor, R.L., Nithiarasu, P.: The Finite Element Method for Fluid Dynamics, 7th edn. Elsevier Butterworth-Heinemann, Oxford (2014)

    MATH  Google Scholar 

Download references

Acknowledgements

We are thankful to Ian Griffiths (Oxford) for the stimulating discussions about water filter models and for providing the experimental data employed in Sect. 6.2. We also thank the comments of two anonymous referees, which resulted in a number of improvements to the manuscript. In addition, this work has been partially supported by Fondecyt Project 1170473; CRHIAM, Project ANID/FONDAP/15130015; project CONICYT/PIA/AFB170001; by CONICYT through the Becas-Chile program for foreign students; by the Monash Mathematics Research Fund S05802-3951284; by the Ministry of Science and Higher Education of the Russian Federation within the framework of state support for the creation and development of World-Class Research Centers “Digital biodesign and personalized healthcare” No 075-15-2020-926; and by the HPC-Europa3 Transnational Access Grant HPC175QA9K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Ruiz-Baier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baird, G., Bürger, R., Méndez, P.E. et al. Second-order schemes for axisymmetric Navier–Stokes–Brinkman and transport equations modelling water filters. Numer. Math. 147, 431–479 (2021). https://doi.org/10.1007/s00211-020-01169-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-020-01169-1

Mathematics Subject Classification

Navigation