Skip to main content
Log in

Study of Chemical Inhomogeneity in Beta-Solidifying TiAl Alloys of Various Composition

  • Published:
Metallurgist Aims and scope

The results of original research into the structure and statistical distribution of elements alloyed into ingots from a new Russian intermetallic TiAl alloy having two variable compositions (Ti–44.5Al–2V–1Nb–1.5Zr/2.5Cr–0.1Gd, at.%) are presented. The experimental ingots having a nominal weight of 3–30 kg were obtained according to two technological schemes: 1 — triple vacuum arc remelting (VAR + VAR + VAR) with a consumable compacted electrode; 2 — VAR → VAR → single vacuum induction melting (VAR + VAR + VIM) in a cold crucible furnace. The statistical processing of the chemical analysis results was carried out using Shewhart charts. The results indicate a minimum degree of volumetric macrosegregation in the ingots and the almost complete absence of segregation inhomogeneity in Zr- and Cr-containing compositions: the maximum range of Al content over the cross section of triple-remelted ingots was no more than 0.84 at.% (0.42 wt.%), while along the height of the ingots, Al content was no more than 1.87 at.% (0.55 wt.%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. A. Nochovnaya, O. A. Bazyleva, D. E. Kablov, and P. V. Panin, Intermetallic Ti- and Ni-based Alloys, VIAM, Moscow (2018).

    Google Scholar 

  2. V. Guther, M. Allen, J. Klose, and H. Clemens, “Metallurgical processing of titanium aluminides on industrial scale,” Intermetallics, 103, 12–22 (2018).

    Article  CAS  Google Scholar 

  3. D. E. Kablov, P. V. Panin, A. A. Shiryaev, and N. A. Nochovnaya, “The experience of using vacuum arc furnace ALD VAR L200 for smelting heat-resistant TiAl-based alloys ingots,” Aviats. Mat. Tech., No. 2(31), 27–33 (2014); DOI: https://doi.org/10.18577/2071-9140-2014-0-2-27-33.

  4. V. Guther, A. Chatterjee, and H. Kettner, “Status and prospects of γ-TiAl ingot production,” Proc. of Int. Symp. on Gamma Titanium Aluminides (ISGTA-2003), 241–248, San Diego, CA (2003).

  5. N. A. Belov, V. D. Belov, and N. I. Dashkevich, Phase Composition of Multicomponent TiAl-Based Γ-Alloys: A Manual, VIAM, Moscow (2018).

    Google Scholar 

  6. K. Kothari, R. Radhakrishnan, and N. M. Wereley, “Advances in gamma titanium aluminides and their manufacturing techniques,” Prog. Aerosp. Sci., 55, 1–16 (2012); DOI: https://doi.org/10.1016/j.paerosci.2012.04.001.

    Article  Google Scholar 

  7. E. Lukina, M. Kollerov, J. Meswania, et al., “The influence of TiN and DLC deposition on the wear resistance of Nitinol — Ti6Al4V combination for the medical application,” Mater. Today: Proc., 4(3), 4675–4679 (2017); DOI:https://doi.org/10.1016/j.matpr.2017.04.050.

    Article  Google Scholar 

  8. Y.-W. Kim and S.-L. Kim, “Advances in gammalloy materials processes-application technology: successes, dilemmas, and future,” J. Met., 70, 553–560 (2018); DOI: https://doi.org/10.1007/s11837-018-2747-x.

    Article  Google Scholar 

  9. F. Appel, J. D. H. Paul, and M. Oehring, Gamma Titanium Aluminide Alloys: Science and Technology, Weinheim, Wiley-VCH Verlag&Co. KGaA (2011).

    Book  Google Scholar 

  10. N. A. Nochovnaya, P. V. Panin, A. S. Kochetkov, and K. A. Bokov, “Modern heat-resistant γ-TiAl-based alloys,” Metal. Term. Obr. Metal., No. 7(709), 23–27 (2014).

  11. A. A. Ilyin, B. A. Kolachev, and I. S. Polkin, Titanium Alloys. Composition, Structure, Properties: A Handbook, Moscow, VILSMATI (2009).

  12. E. N. Kablov, “Innovative research of FSUE “VIAM” SSC of the Russian Federation under the “Strategic directions of materials and their processing technologies development up to 2030” state initiative,” Aviats. Mat. Tekh., No. 1(34), 3–33 (2015); DOI: https://doi.org/10.18577/2071-9140-2015-0-1-3-33.

  13. E. N. Kablov, “Strategic directions of materials and their processing technologies development up to 2030,” Aviats. Mat. Tekh., No. S., 7–17 (2012).

  14. RF Patent 2606368 RU. Titanium intermetallic-based alloy and a product based on it, submitted on 15.10.2015, published on 10.01.2017. Bulletine No. 1.

  15. GOST R 50779.42–99. Statistical methods. Shewhart control charts.

  16. N. A. Nochovnaya, A. A. Shiryaev, D. A. Dzunovich, and P. V. Panin, “A study of chemical composition of a large-sized experimental industrial ingot of highly-alloyed pseudo-p titanium alloy BT47,” Trudy VIAM, No. 1 (61) (2018); DOI: https://doi.org/10.18577/2307-6046-2018-0-1-6-6.

  17. E. N. Kablov, Yu. A. Bondarenko, and A. B. Echin, “Developing a technology of guided crystallization of cast highly heat-resistant alloys with a variable temperature gradient,” Aviats. Mat. Tekh, No. S, 24–38 (2017); DOI: https://doi.org/10.18577/2071-9140-2017-0-S-24-38.

  18. E. N. Kablov, V. V. Sidorov, D. E. Kablov, and P. G. Min, “Metallurgical foundations of ensuring the high quality of monocrystal heat-resistant nickel alloys,” Aviats. Mat. Tekh., No. S, 55–71 (2017); DOI: https://doi.org/10.18577/2071-9140-2017-0-S-55-71.

  19. P. V. Panin, A. S. Kochetkov, A. V. Zavodov, and E. A. Lukina, “Effect of Gd addition on phase composition, structure, and properties of beta-solidifying TiAl-based alloy with Zr and Cr content variability,” Intermetallics, 121, Art. 106781 (2020); DOI: https://doi.org/10.1016/j.intermet.2020.106781.

  20. P. V. Panin, N. A. Nochovnaya, E. A. Lukina, and A. S. Kochetkov, “Effect of chemical composition variability on phase composition and structure of beta-solidifying TiAl-alloy in as-cast condition,” Inorg. Mater. App. Res., 10(2), 316–321 (2019); DOI: https://doi.org/10.1134/S2075113319020333.

    Article  Google Scholar 

  21. V. S. Sokolovsky, N. D. Stepanov, S. V. Zherebtsov, et al., “The effect of Gd addition on the kinetics of α2 → γ transformation in γ-TiAl based alloys,” Intermetallics, 120, Art.106759 (2020); DOI: https://doi.org/10.1016/j.intermet.2020.106759.

  22. M. Oehring, A. Stark, J. D. H. Paul, et al., “Microstructural refinement of boron-containing β-solidifying γ-titanium aluminide alloys through heat treatments in the β phase field,” Intermetallics, 32, 12–20 (2013).

    Article  CAS  Google Scholar 

  23. T. He, W. Luo, J. Lei, et al., “Effect of non-metallic elements Si, C and O on mechanical properties of high temperature titanium alloys,” Proc. of 12th World Conf. on Titanium, 2, 1240–1243 (2011).

    Google Scholar 

  24. H. Gabrisch, A. Stark, F.-P. Schimansky, et al., “Carbides in Ti-45Al-5Nb alloys with different carbon contents,” Proc. of 12th World Conf. on Titanium, 2, 1407–1410 (2011).

    Google Scholar 

  25. Y. Xin, X. Zhengping, L. Yong, et al., “Microstructure refinement and improvement of mechanical properties of as-cast TiAl based intermetallics with yttrium and boron addition,” Proc. of 12th World Conf. on Titanium, 2, 1571–1574 (2011).

    Google Scholar 

  26. W. D. Wang, Y. C. Ma, B. Chen, et al., “Effects of boron addition on grain refinement in TiAl-based alloys,” J. Mat. Sci. Tech., 26, 639–647 (2007).

    Article  Google Scholar 

  27. V. S. Sokolovsky, N. D. Stepanov, S. V. Zherebtsov, et al., “Hot deformation behavior and processing maps of B and Gd containing β-solidified TiAl based alloy,” Intermetallics, 94, 138–151 (2018); DOI: https://doi.org/10.1016/j.intermet.2018.01.004.

    Article  CAS  Google Scholar 

  28. V. I. Ivanov and K. K. Yasinskiy, “Benefit of employing Ti3Al and TiAl intermetallics-based heat-resistant alloys,” Tekh. Legk. Spl., No. 3, 7–12 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kochetkov.

Additional information

Translated from Metallurg, Vol. 64, No. 9, pp. 93–100, September, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochetkov, A.S., Panin, P.V., Nochovnaya, N.A. et al. Study of Chemical Inhomogeneity in Beta-Solidifying TiAl Alloys of Various Composition. Metallurgist 64, 962–973 (2021). https://doi.org/10.1007/s11015-021-01077-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-021-01077-1

Keywords

Navigation