Skip to main content
Log in

Effects of preparing conditions on the synthesis of Y2SiO5 nanoparticles by low-temperature molten salt method

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Yttrium silicate is one of the promising environmental barrier coating materials used to protect ceramic matrix composites (CMCs) under specific operating conditions. In this paper, yttrium monosilicate (Y2SiO5, YMS) nanoparticles were synthesized using a molten salt method with a low synthesis temperature. To find the optimal experimental parameters, YMS nanoparticles were synthesized under different conditions using the molten salt method. The experimental parameters, such as different precursor/salt ratios, precipitants, calcination temperatures, and holding times, were studied. The samples were systematically characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and BET method. The results showed that all the parameters we mentioned have effects on the synthesis of Y2SiO5 nanoparticles, especially the calcination temperature, the precipitant, and holding time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kumar, P., Srivastava, V.: Tribological behaviour of C/C–SiC composites—a review. J Adv Ceram. 5(1), 1–12 (2016)

    Article  Google Scholar 

  2. Naslain, R.: Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Compos Sci Technol. 64(2), 155–170 (2004)

    Article  CAS  Google Scholar 

  3. Du, J., Zhang, H., Geng, Y., Ming, W., He, W., Ma, J., Cao, Y., Li, X., Liu, K.: A review on machining of carbon fiber reinforced ceramic matrix composites. Ceram Int. 45, 18155–18166 (2019)

    Article  CAS  Google Scholar 

  4. Yin, X., Cheng, L., Zhang, L., Travitzky, N., Greil, P.: Fibre-reinforced multifunctional SiC matrix composite materials. Int Mater Rev. 62(3), 117–172 (2017)

    Article  CAS  Google Scholar 

  5. Arai, Y., Inoue, R., Goto, K., Kogo, Y.: Carbon fiber reinforced ultra-high temperature ceramic matrix composites: a review. Ceram Int. 45, 14481–14489 (2019)

    Article  CAS  Google Scholar 

  6. Grathwohl, G., Hähnel, A., Meier, B., Pippel, E., Richter, G., Woltersdorf, J.: Fibre-reinforced SiC-matrix composites: microstructure, interfaces and mechanical properties. J Eur Ceram Soc. 10(1), 1–12 (1992)

    Article  CAS  Google Scholar 

  7. Lamon, J.: Creep of fibre-reinforced ceramic matrix composites. Int. Mater. Rev. 65(1), 28–62 (2020)

    Article  CAS  Google Scholar 

  8. Richards, B.T., Young, K.A., de Francqueville, F., Sehr, S., Begley, M.R., Wadley, H.N.: Response of ytterbium disilicate–silicon environmental barrier coatings to thermal cycling in water vapor. Acta Mater. 106, 1–14 (2016)

    Article  CAS  Google Scholar 

  9. Kousaalya, A.B., Kumar, R., Packirisamy, S.: Characterization of free carbon in the as-thermolyzed Si-BCN ceramic from a polyorganoborosilazane precursor. J. Adv. Ceram. 2(4), 325–332 (2013)

    Article  CAS  Google Scholar 

  10. Lodhe, M., Babu, N., Selvam, A., Balasubramanian, M.: Synthesis and characterization of high ceramic yield polycarbosilane precursor for SiC. J. Adv. Ceram. 4(4), 307–311 (2015)

    Article  CAS  Google Scholar 

  11. Krenkel, W., Berndt, F.: C/C–SiC composites for space applications and advanced friction systems. Mater Sci Eng A. 412(1–2), 177–181 (2005)

    Article  Google Scholar 

  12. Jie, X., Qiaomu, L., Jingchen, L., Hongbo, G., Huibin, X.: Microstructure and high-temperature oxidation behavior of plasma-sprayed Si/Yb2SiO5 environmental barrier coatings. Chin J Aeronaut. 32(8), 1994–1999 (2019)

    Article  Google Scholar 

  13. Ryu, H., Lee, S.M., Han, Y.S., Choi, K., An, G.S., Nahm, S., Oh, Y.S.: Preparation of crystalline ytterbium disilicate environmental barrier coatings using suspension plasma spray. Ceram. Int. 45(5), 5801–5807 (2019)

    Article  CAS  Google Scholar 

  14. Yang, M.-Y., Wang, J.-W., Li, L., Dong, B.-B., Xin, X., Agathopoulos, S.: Fabrication of low thermal conductivity yttrium silicate ceramic flat membrane for membrane distillation. J Eur Ceram Soc. 39(2–3), 442–448 (2019)

    Article  CAS  Google Scholar 

  15. Summers, W.D., Poerschke, D.L., Taylor, A.A., Ericks, A.R., Levi, C.G., Zok, F.W.: Reactions of molten silicate deposits with yttrium monosilicate. J Am Ceram Soc. 103(4), 2919–2932 (2020)

    Article  CAS  Google Scholar 

  16. Stokes, J.L., Harder, B.J., Wiesner, V.L., Wolfe, D.E.: High-temperature thermochemical interactions of molten silicates with Yb2Si2O7 and Y2Si2O7 environmental barrier coating materials. J Eur Ceram Soc. 39(15), 5059–5067 (2019)

    Article  CAS  Google Scholar 

  17. Ogura, Y., Kondo, M., Morimoto, T., Notomi, A., Sekigawa, T.: Oxygen permeability of Y2SiO5. Mater Trans. 42(6), 1124–1130 (2001)

    Article  CAS  Google Scholar 

  18. Sun, Z., Li, M., Zhou, Y.: Thermal properties of single-phase Y2SiO5. J Eur Ceram Soc. 29(4), 551–557 (2009)

    Article  CAS  Google Scholar 

  19. Rakov, N., Maciel, G.S.: Broadband light emission induced by laser absorption and optimized by thermal injection in Nd3+: Y2SiO5 ceramic powder. J Am Ceram Soc. 103(3), 1782–1788 (2020)

    Article  CAS  Google Scholar 

  20. Haile, H., Dejene, F.: Effect of substrate temperature on the material properties of the Y2SiO5: Ce3+ thin film by pulsed laser deposition (PLD) method. Optik. 184, 508–517 (2019)

    Article  CAS  Google Scholar 

  21. Ramakrishna, G., Nagabhushana, H., Basavaraj, R., Prashantha, S., Sharma, S., Naik, R., Anantharaju, K.: Green synthesis, structural characterization and photoluminescence properties of Sm3+ co-doped Y2SiO5: Ce3+ nanophosphors for wLEDs. Optik. 127(13), 5310–5315 (2016)

    Article  CAS  Google Scholar 

  22. Flores, D.-L., Gutierrez, E., Cervantes, D., Chacon, M., Hirata, G.: White-light emission from Y2SiO5: Ce3+, Tb3+ and Sr2Si5N8: Eu2+ phosphor blends: a predictive model. Micro Nano Lett. 12(7), 500–504 (2017)

    Article  CAS  Google Scholar 

  23. Ishiwada, N., Fujii, E., Yokomori, T.: Evaluation of Dy-doped phosphors (YAG: Dy, Al2O3: Dy, and Y2SiO5: Dy) as thermographic phosphors. J Lumin. 196, 492–497 (2018)

    Article  CAS  Google Scholar 

  24. Dhanalakshmi, K., Reddy, A.J., Monika, D., Krishna, R.H., Parashuram, L.: Concentration dependent luminescence spectral investigation of Sm3+ doped Y2SiO5 nanophosphor. J Non-Cryst Solids. 471, 195–201 (2017)

    Article  CAS  Google Scholar 

  25. Zhang, R., Li, S., Ye, C.: Fabrication and properties of machinable porous ZrO2f/Y2SiO5 nanocomposites prepared by a simple method. J Alloys Compd. 712, 445–450 (2017)

    Article  CAS  Google Scholar 

  26. Raghunandan, S., Kumar, R.S., Kamaraj, M., Gandhi, A.S.: Role of water in the sol-gel synthesis of yttrium monosilicate. Ceram Int. 45(4), 4487–4492 (2019)

    Article  CAS  Google Scholar 

  27. Kumar, S., Drummond, C.H.: Crystallization of various compositions in the Y2O3–SiO2 system. Int J Mater Res. 7(4), 997–1003 (1992)

    Article  CAS  Google Scholar 

  28. Zhang, R., Fang, D., Chen, X., Pei, Y., Wang, Z., Wang, Y.: Microstructure and properties of highly porous Y2SiO5 ceramics produced by a new water-based freeze casting. Mater Des. 46, 746–750 (2013)

    Article  CAS  Google Scholar 

  29. Zhang, R., Han, B., Fang, D., Wang, Y.: Porous Y2SiO5 ceramics with a centrosymmetric structure produced by freeze casting. Ceram Int. 41(9), 11517–11522 (2015)

    Article  CAS  Google Scholar 

  30. Chen, H., Gao, Y., Liu, Y., Luo, H.: Hydrothermal synthesis of ytterbium silicate nanoparticles. Inorg Chem. 49(4), 1942–1946 (2010)

    Article  CAS  Google Scholar 

  31. Sun, Z., Li, M., Li, Z., Zhou, Y.: Hot corrosion of γ-Y2Si2O7 in strongly basic Na2CO3 molten salt environment. J Eur Ceram Soc. 28(1), 259–265 (2008)

    Article  CAS  Google Scholar 

  32. Reddy, M., Kenrick, K., Wei, T.Y., Chong, G.Y., Leong, G.H., Chowdari, B.: Nano-ZnCo2O4 material preparation by molten salt method and its electrochemical properties for lithium batteries. J Electrochem Soc. 158(12), A1423–A1430 (2011)

    Article  CAS  Google Scholar 

  33. Huang, Z., Li, F., Jiao, C., Liu, J., Huang, J., Lu, L., Zhang, H., Zhang, S.: Molten salt synthesis of La2Zr2O7 ultrafine powders. Ceram Int. 42(5), 6221–6227 (2016)

    Article  CAS  Google Scholar 

  34. Safaei-Naeini, Y., Golestani-Fard, F., Khorasanizadeh, F., Aminzare, M., Zhang, S.: Low temperature molten salt synthesis of nano crystalline MgAl2O4 powder. Iran J Mater Sci Eng. 8(3), 23–28 (2011)

    CAS  Google Scholar 

Download references

Funding

This work was jointly supported by the National Natural Science Foundation (NSFC) (No. 51671208), NSAF Joint Fund (No. U1730139), University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (No. 2018103), Fundamental Research Funds in Heilongjiang Provincial Universities (No. 135309110), Basic scientific project of Heilongjiang Provincial Department of Education (No. 135309512), and National Science and Technology Major Project (2017-VI-0020-0093) of the Ministry of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaohui Wang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Wang, C., Wang, L. et al. Effects of preparing conditions on the synthesis of Y2SiO5 nanoparticles by low-temperature molten salt method. J Aust Ceram Soc 57, 29–36 (2021). https://doi.org/10.1007/s41779-020-00507-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-020-00507-8

Keywords

Navigation