Skip to main content
Log in

Preparation and characterisation of liquid epoxidised natural rubber in latex stage by chemical degradation

  • Original Paper
  • Published:
Journal of Rubber Research Aims and scope Submit manuscript

Abstract

Preparation and characterisation of liquid epoxidised natural rubber in latex by chemical degradation was successfully carried out. The effect of certain parameters, such as surfactant concentrations, incubation time of ENR latex in the presence of surfactant and pH condition on the reaction efficiency were studied. Effect of degrading agent concentrations and drying temperatures of LENR were also investigated. The molecular weight, i.e., Mw and Mn, which was determined by gel permeation chromatography (GPC) and gel content of LENR were decreased gradually as the degrading agent concentrations increased. Moreover, the drying temperatures, ranging from 333 to 423 K showed no significant changes in epoxidation levels and epoxy derivatives, as the drying period decreased from 24 to 4 h. The resulting LENR were further characterised using Fourier transform infra-red (FTIR) spectroscope, nuclear magnetic resonance (NMR) spectroscope, differential scanning calorimeter (DSC) and field emission-scanning electron microscope (FE-SEM). The glass transition temperature, Tg of LENR, i.e., 252 K was increased compared with ENR, i.e., 248 K. Besides, the latex particles morphology of LENR were found to be more uniform and larger compared with ENR. The functional groups such as carbonyl as functional end group, hydroxyl, epoxy, ester and furan groups were increased after degradation of ENR to form LENR. This indicates that the presence of functional polar groups at the LENR backbone play an important role which brings about the distinguished characters and properties of LENR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Yusof NH, Darji D, Nesan KV B, Rasdi FRM (2018) Preparation of liquid epoxidized natural rubber in latex stage by chemical degradation. In AIP Conference Proceedings (Vol. 1985, No. 1, p. 040006). AIP Publishing

  2. Nair R, Biju PK, Thomas GV, Gopinathan Nair MR (2009) Blends of PVC and epoxidized liquid natural rubber: studies on impact modification. J Appl Polym Sci 111(1):48–56

    Article  CAS  Google Scholar 

  3. Yoksan R (2008) Epoxidized natural rubber for adhesive applications. Kasetsart J (Nat Sci) 42:325–332

    Google Scholar 

  4. Yusof NH, Mohd SF (2011) Viscosity reduction of latex using NR-based processing aids. Malaysian Rubber Technology Development, 11(2)

  5. Tan SK, Ahmad S, Chia CH, Mamun A, Heim HP (2013) A comparison study of liquid natural rubber (LNR) and liquid epoxidized natural rubber (LENR) as the toughening agent for epoxy. Am J Mater Sci 3(3):55–61

    Google Scholar 

  6. Saetung A, Rungvichaniwat A, Campistron I, Klinpituksa P, Laguerre A, Phinyocheep P, Pilard JF (2010) Controlled degradation of natural rubber and modification of the obtained telechelic oligoisoprenes: preliminary study of their potentiality as polyurethane foam precursors. J Appl Polym Sci 117(3):1279–1289

    CAS  Google Scholar 

  7. Derouet D, Morvan F, Brosse JC (1996) Flame-resistance and thermal stability of 1, 4-polydienes modified by dialkyl (or aryl) phosphates. J Natl Rubber Res (Malaysia)

  8. Sperling LH, Sperling LH (2006) Chapter 3, pg 94–103, Introduction to physical polymer science (Vol. 78). New York: Wiley

  9. Carter WC, Scott RL, Magat M (1946) The viscosity-molecular weight relation for natural rubber. J Am Chem Soc 68(8):1480–1483

    Article  CAS  Google Scholar 

  10. Phinyocheep P, Phetphaisit CW, Derouet D, Campistron I, Brosse JC (2005) Chemical degradation of epoxidized natural rubber using periodic acid: preparation of epoxidized liquid natural rubber. J Appl Polym Sci 95(1):6–15

    Article  CAS  Google Scholar 

  11. Isa SZ, Yahya R, Hassan A, Tahir M (2007) The influence of temperature and reaction time in the degradation of natural rubber latex. Malays J Anal Sci 11:42–47

    Google Scholar 

  12. Baker CSL, Gelling IR, Newell R (1985) Epoxidized natural rubber. Rubber Chem Technol 58(1):67–85

    Article  CAS  Google Scholar 

  13. Gelling IR (1991) Epoxidised natural rubber. J Nat Rubb Res 6(3):184–205

    CAS  Google Scholar 

  14. Li SD, Chen Y, Zhou J, Li PS, Zhu CS, Lin ML (1998) Study on the thermal degradation of epoxidized natural rubber. J Appl Polym Sci 67(13):2207–2211

    Article  CAS  Google Scholar 

  15. Morand JL (1977) Chain scission in the oxidation of polyisoprene. Rubber Chem Technol 50(2):373–396

    Article  CAS  Google Scholar 

  16. Klinklai W, Kawahara S, Mizumo T, Yoshizawa M, Sakdapipanich JT, Isono Y, Ohno H (2003) Depolymerization and ionic conductivity of enzymatically deproteinized natural rubber having epoxy group. Eur Polymer J 39(8):1707–1712

    Article  CAS  Google Scholar 

  17. Rooshenass P, Yahya R, Gan SN (2018) Preparation of liquid epoxidized natural rubber by oxidative degradations using periodic acid, potassium permanganate and UV-irradiation. J Polym Environ 26(4):1378–1392

    Article  CAS  Google Scholar 

  18. Bonfils F, Char C, Ehabe EE (2008) Intrinsic viscosity characterization of poly (cis-isoprene) in hevea natural rubber. Int J Polym Mater 57(11):1036–1044

    Article  CAS  Google Scholar 

  19. Yusof NH, Nesan KVB, Rasdi FRM (2020) Controlling the characteristics of raw natural rubber by partial degradation in the latex stage using a water-soluble degrading agent. J Rubber Res 23(4):301–310

    Article  Google Scholar 

  20. Derouet D, Radhakrishnan N, Brosse JC, Boccaccio G (1994) Phosphorus modification of epoxidized liquid natural rubber to improve flame resistance of vulcanized rubbers. J Appl Polym Sci 52(9):1309–1316

    Article  CAS  Google Scholar 

  21. Zhang J, Zhou Q, Jiang XH, Du AK, Zhao T, van Kasteren J, Wang YZ (2010) Oxidation of natural rubber using a sodium tungstate/acetic acid/hydrogen peroxide catalytic system. Polymer Degradation Stability 95(6):1077–1082

    Article  CAS  Google Scholar 

  22. Thitithammawong A, Srangkhum S, Rungvichaniwat A (2011) Hydroxytelechelic natural rubber from natural rubber and epoxidised natural rubber. J Rubber Res 14(4):230–440

    CAS  Google Scholar 

  23. Baratha KV, Nourry A, Pilard JF (2015) Synthesis of NR based polyurethanes containing phosphorylated polymers as chain extenders. Eur Polymer J 70:317–330

    Article  CAS  Google Scholar 

  24. Rooshenass P, Yahya R, Gan SN (2016) Comparison of three different degradation methods to produce liquid epoxidized natural rubber. Rubber Chem Technol 89(1):177–198

    Article  CAS  Google Scholar 

  25. Bac NV, Terlemezyan L, Mihailov M (1993) Epoxidation of natural rubber in latex in the presence of a reducing agent. J Appl Polym Sci 50(5):845–849

    Article  Google Scholar 

  26. Darji D, Yusof NH, Rasdi FRM (2018) Shelf life of liquid epoxidized natural rubber (LENR). In AIP Conference Proceedings (Vol. 1985, No. 1, p. 040007). AIP Publishing

  27. Darji D, Yusof NH, Rasdi FRM (2019) Properties of liquid epoxidized natural rubber upon storage. Submitted to JRR

  28. Gelling IR (1982) A method of making epoxidised Cis 1,4-polyisoprene rubber, British Patent, 2. 2 113 692

  29. MRB In-house Test Method UPB/P/022 (2017) Determination of epoxidised level via proton nuclear magnetic resonance spectroscopy, Malaysian Rubber Board

  30. Bach RD, Glukhovtsev MN, Gonzalez C (1998) High-level computational study of the stereoelectronic effects of substituents on alkene epoxidations with peroxyformic acid. J Am Chem Soc 120(38):9902–9910

    Article  CAS  Google Scholar 

  31. Lobachev VL, Rudakov ES (2006) The chemistry of peroxynitrite. Reaction mechanisms and kinetics. Russian Chem Rev 75(5):375

    Article  CAS  Google Scholar 

  32. Ibrahim S, Daik R, Abdullah I (2014) Functionalization of liquid natural rubber via oxidative degradation of natural rubber. Polymers 6(12):2928–2941

    Article  Google Scholar 

  33. Nawamawat K, Sakdapipanich JT, Ho CC, Ma Y, Song J, Vancso JG (2011) Surface nanostructure of Hevea brasiliensis natural rubber latex particles. Colloids Surf, A 390(1–3):157–166

    Article  CAS  Google Scholar 

  34. Yusof NH, Kawahara S, Yamamoto Y, Chaikumpollert O (2015) Preparation of super low protein natural rubber. KGK Rubber Point 68(4):46–51

    CAS  Google Scholar 

  35. Luo Y, Yang C, Chen B, Xu K, Zhong J, Peng Z, Wang Q (2013) Thermal degradation of epoxidized natural rubber in presence of neodymium stearate. J Rare Earths 31(5):526–530

    Article  CAS  Google Scholar 

  36. Gan SN, Hamid ZA (1997) Partial conversion of epoxide groups to diols in epoxidized natural rubber. Polymer 38(8):1953–1956

    Article  CAS  Google Scholar 

  37. Davey JE, Loadman MJR (1984) A chemical demonstration of the randomness of epoxidation of natural rubber. Br Polym J 16(3):134–138

    Article  CAS  Google Scholar 

  38. Agapov AL, Wang Y, Kunal K, Robertson CG, Sokolov AP (2012) Effect of polar interactions on polymer dynamics. Macromolecules 45(20):8430–8437

    Article  CAS  Google Scholar 

  39. Khalyavina A, Häußler L, Lederer A (2012) Effect of the degree of branching on the glass transition temperature of polyesters. Polymer 53(5):1049–1053

    Article  CAS  Google Scholar 

  40. Tarachiwin L, Sakdapipanich JT, Tanaka Y (2005) Relationship between particle size and molecular weight of rubber from Hevea brasiliensis. Rubber Chem Technol 78(4):694–704

    Article  CAS  Google Scholar 

  41. Sriring M, Nimpaiboon A, Kumarn S, Sirisinha C, Sakdapipanich J, Toki S (2018) Viscoelastic and mechanical properties of large-and small-particle natural rubber before and after vulcanization. Polym Testing 70:127–134

    Article  CAS  Google Scholar 

  42. Tangpakdee J, Mizokoshi M, Endo A, Tanaka Y (1998) Novel method for preparation of low molecular weight natural rubber latex. Rubber Chem Technol 71(4):795–802

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Malaysian Rubber Board for Scientific and Economic Advisory Council (SEAC) under project code S17SRP0653B. We highly appreciate and thank Dr. Nghiem Thi Thuong from Hanoi University Science and Technology for the fruitful discussion and valuable advice. A special thanks and appreciation goes to Mdm. Faezah Ismail, Mr. Hamdan Abu Bakar, Mr. Muhammad Saiful, Mdm. Siti Mahirah Romli, Mr. Hishamuddin Samat, Mr. Badrol Hisham, Mr. Faizal and Ms. Nor Fatiah Ismail for their great assistance throughout the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurul Hayati Yusof.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusof, N.H., Darji, D., Mohd Rasdi, F.R. et al. Preparation and characterisation of liquid epoxidised natural rubber in latex stage by chemical degradation. J Rubber Res 24, 93–106 (2021). https://doi.org/10.1007/s42464-020-00076-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42464-020-00076-2

Keywords

Navigation