Skip to main content
Log in

The degradation of thin poly(methyl methacrylate) films subjected to different destructive treatments

  • REVIEW PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A comparative study of the degradation of poly(methyl methacrylate) (PMMA) films deposited on metal mirrors as a result of heat treatment or irradiation with various UV or γ radiation is presented. The main degradation processes of PMMA during degradation are the random homolytic breakdown of carbon–carbon bonds in the polymer main chain and the photolysis of the lateral methyl groups and lateral esters to form free radicals. All observations on the reflection–absorption spectra are in agreement with the mechanism of PMMA film degradation, subjected to various types of destructive degradation: thermal heating, UV irradiation, or γ irradiation. Unlike other approaches, this one used the reflection–absorption spectra of PMMA thin films deposited on metal mirrors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fateh T, Richard F, Rogaume T, Joseph P (2016) Experimental and modelling studies on the kinetics and mechanisms of thermal degradation of polymethyl methacrylate in nitrogen and air. J Anal Appl Pyrol 120:423–433

    Article  CAS  Google Scholar 

  2. Comuce M, Rogaume T, Richard F, Fateh T, Luche J and Rousseaux P (2011) Kinetics and Mechanisms of the Thermal Degradation of Polymethyl Methacrylate by TGA/FTIR Analysis, Proc. of the Sixth International Seminar on Fire & Explosion Hazards (FEH6), Bradley D, Makhviladze G and Molkov V Eds. Published by Research Publishing, University of Leeds, UK: 560–574

  3. Bennet F, Hart-Smith G, Gruendling T, Davis TP, Barker PJ, Barner-Kowollik C (2010) Degradation of Poly(methyl methacrylate) Model Compounds Under Extreme Environmental Conditions Macromol. Chem Phys 211:1083–1097

    CAS  Google Scholar 

  4. Sayyah SM, Khaliel AB, Abd El-Salam HM, Younis MA (2012) Infrared Spectroscopic Studies on Some Thermally Degraded Poly(methyl methacrylate) Doped with N, N, N´, N´- tetraoxaloyl Para Sulphanilamide. Egypt J Chem 55(6):603–623

    Article  Google Scholar 

  5. Holland BJ, Hay JN (2001) The kinetics and mechanisms of the thermal degradation of poly(methyl methacrylate) studied by thermal analysis-Fourier transform infrared spectroscopy. Polymer 42(11):4825–4835

    Article  CAS  Google Scholar 

  6. Kashiwagi T, Inabi A (1989) Behavior of Primary Radicals during Thermal Degradation of Poly(Methy1 Methacrylate). Polym Degrad Stab 26:161–184

    Article  CAS  Google Scholar 

  7. Çaykara T, Güven O (1999) UV degradation of poly(methyl methacrylate) and its vinyltriethoxysilane containing copolymers. Polym Degrad Stab 65:225–229

    Article  Google Scholar 

  8. Yousif E, El-Hiti GA, Haddad R, Balakit AA (2015) Photochemical Stability and Photostabilizing Efficiency of Poly(methyl methacrylate) Based on 2-(6-Methoxynaphthalen-2-yl)propanoate Metal Ion Complexes. Polymers 7:1005–1019

    Article  CAS  Google Scholar 

  9. Nahida JH, Spectrophotometric Analysis for the UV-Irradiated (PMMA) (2012) International Journal of Basic & Applied Sciences IJBAS-IJENS 12(2): 58–67

  10. Wochnowski C, Shams Eldin MA, Metev S (2005) UV-laser-assisted degradation of poly(methyl methacrylate). Polym Degrad Stab 89:252–264

    Article  CAS  Google Scholar 

  11. Ennis CP, Kaiser RI (2010) Mechanistical studies on the electron-induced degradation of polymethylmethacrylate and Kapton. Phys Chem Chem Phys 12:14902–14915

    Article  CAS  Google Scholar 

  12. Francis SA, Ellison AH (1959) Infrared spectra of monolayers on metal mirrors. J Opt Soc Amer 49:131

    Article  CAS  Google Scholar 

  13. Greenler RG (1969) Reflection method for obtaining the infrared spectrum of a thin layer on a metal surface. J Chem Phys 50:1963

    Article  CAS  Google Scholar 

  14. Rabolt JF, Jurich M, Swalen JD (1985) Infrared Reflection-Absorption Studies of Thin Films at Grazing Incidence. Appl Spectrosc 39(2):269–272

    Article  CAS  Google Scholar 

  15. Allara DL, Baca A, Pryde CA (1978) Distortions of Band Shapes in External Reflection Infrared Spectra of Thin Polymer Films on Metal Substrates. Macromolecules 11(6):1215–1220

    Article  CAS  Google Scholar 

  16. Sathish S, Shekar BC (2014) Preparation and characterization of nano scale PMMA thin films. Indian J Pure Appl Phys 52:64–67

    CAS  Google Scholar 

  17. Shin HS, Jung YM, Oh TY, Chang T, Kim SB, Lee DH, Noda I (2002) Glass Transition Temperature and Conformational Changes of Poly(methyl methacrylate) Thin Films Determined by a Two-Dimensional Map Representation of Temperature-Dependent Reflection-Absorption FTIR Spectra. Langmuir 18:5953–5958

    Article  CAS  Google Scholar 

  18. Fringeli UP (2000) In: Tranter GE and Holmes JL (eds) Encyclopedia of Spectroscopy and Spectrometry, Academic Press, London

  19. Querry MR (1985) Optical Constants, contractor report. U.S. Army Chem. Res. and Dev. Eng. Cent, Aberdeen Proving Ground, Md

    Google Scholar 

  20. Nishikida K, Nishio E, Hannah RW (1995) Selected Applications of Modern FT-IR Techniques. Kodansha, Tokyo

    Google Scholar 

  21. Abouelezz M and Waters PF (1979) Studies on the photodegradation of poly(methyl methacrylate). NBSIR 79–1766, National Bureau of Standards, Washington DC

  22. Vus Ya M, Shcherba ND, Tynnyi AN (1973) Spectroscopic investigation of photodestruction of polymethylmethacrylate. Mater Sci 6(4):528–530

    Article  Google Scholar 

  23. Yan M, Liu L, Chen L, Li N, Jiang Y, Xu Z, Jing M, Hu Y, Liu L, Zhang X (2019) Radiation resistance of carbon fiber-reinforced epoxy composites optimized synergistically by carbon nanotubes in interface area/matrix. Compos B Eng 172:447–457

    Article  CAS  Google Scholar 

  24. Wang H, Li N, Xu Z, Tian X, Mai W, Li J, Chen C, Chen L, Fu H, Zhang X (2018) Enhanced sheet-sheet welding and interfacial wettability of 3D graphene networks as radiation protection in gamma-irradiated epoxy composites. Compos Sci Technol 157:57–66

    Article  CAS  Google Scholar 

  25. Chen L, Xu Z, Li J, Li Y, Shan M, Wang C, Wang Z, Guo Q, Liu L, Chen G, Qian X (2012) A facile strategy to prepare functionalized graphene via intercalation, grafting and self-exfoliation of graphite oxide. J Mater Chem 22:13460–13463

    Article  CAS  Google Scholar 

  26. Smirnov YuN, Allayarov SR, Lesnichaya VA, Ol’khov YuA, Belov GP, and Dixon DA, (2009) The Effect of Gamma-Radiation on Polymer Composites Based on Thermoplastic Matrices. High Energy Chem 43(6):1–5

    Article  Google Scholar 

  27. O’Rourke Muisener PA, Clayton L, D’Angelo J, Harmon JP (2002) Effects of gamma radiation on poly(methyl methacrylate)/single-wall nanotube composites. J Mater Res 17(10):2507–2513

    Article  Google Scholar 

  28. Rai VN, Mukherjee C, Jain B (2017) UV-Vis and FTIR spectroscopy of gamma irradiated polymethyl methacrylate. Indian J Pure Appl Phys 55:775–785

    Google Scholar 

  29. Muisener POR, Clayton L, D’Angelo J, Harmon JP (2002) Effects of gamma radiation on poly(methyl methacrylate)/single-wall nanotube composites. J Mater Res 17:2507–2513

    Article  CAS  Google Scholar 

  30. Yu EI, Musii RI, Makitra RG, Pristanskii RE (2005) Solubility of Polymethyl Methacrylate in Organic Solvents. Russ J Appl Chem 78(10):1576–1580

    Article  Google Scholar 

  31. Hind AR and Chomette L (2011) The determination of thin film thickness using reflectance spectroscopy – Application Note, Agilent Technologies, Inc.

  32. Kuzmenko AB (2005) Kramers-Kronig constrained variational analysis of optical spectra. Review of Scientific Instruments 76(8): 083108.1–083108.9

  33. Kuzmenko AB (2018) Guide to Reffit: software to fit optical spectra, available online at: https://reffit.ch/. Accesed 5 Aug 2020

  34. Jitian S, Bratu I (2012) Determination of Optical Constants Of Polymethyl Methacrylate Films From IR Reflection-Absorption Spectra. AIP Conf Proc 1425:26–29

    Article  CAS  Google Scholar 

  35. Dybal J, Krimm S (1990) Normal-Mode Analysis of Infrared and Raman Spectra of Crystalline Isotactic Poly(methy1 methacrylate). Macromolecules 23(5):1301–1308

    Article  CAS  Google Scholar 

  36. Schneider B, Štokr J, Schmidt P, Mihailov M, Dirlikov S, Peeva N (1979) Stretching and deformation vibrations of CH2, C(CH3) and O(CH3) groups of poly(methyl methacrylate). Polymer 20:705–712

    Article  CAS  Google Scholar 

  37. Korobeinicheva OP, Paletskya AA, Gonchikzhapova MB, Glazneva RK, Gerasimova IE, Naganovskyc YK, Shundrinad IK, Snegireve AYu, Vinuf R (2019) Kinetics of thermal decomposition of PMMA at different heating rates and in a wide temperature range. Thermochim Acta 671:17–25

    Article  Google Scholar 

  38. Galka P, Kowalonek J, Kaczmarek H (2014) Thermogravimetric analysis of thermal stability of poly(methyl methacrylate) films modified with photoinitiators. J Therm Anal Calorim 115:1387–1394

    Article  CAS  Google Scholar 

  39. Kaczmarek H, Chaberska H (2006) The influence of UV-irradiation and support type on surface properties of poly(methyl methacrylate) thin films. Appl Surf Sci 252:8185–8192

    Article  CAS  Google Scholar 

  40. Mihailov M, Dirlikov S, Peeva N, Georgieva Z (1975) Infrared Spectra of Deuterated Poly(methyl methacrylate), (-CD2C(CH3)COOCH 3)n-. Die Makromolekulare Chemie 176:789–794

    Article  Google Scholar 

  41. Dirlikov S, Koenig JL (1980) Carbon-Hydrogen Stretching and Bending Vibrations in the Raman Spectra of Poly(methylmethacrylate). J Raman Spectrosc 9(3):150–154

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jitian.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berdie, A.D., Berdie, A.A. & Jitian, S. The degradation of thin poly(methyl methacrylate) films subjected to different destructive treatments. J Polym Res 28, 60 (2021). https://doi.org/10.1007/s10965-020-02390-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02390-0

Keywords

Navigation