Skip to main content
Log in

Film Heat Exchangers: Hydrodynamics and Heat Transfer (Review)

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The task of intensifying film evaporation and boiling is extremely relevant. It is of great interest for technologies of chemical, oil refining, food, cryogenic, and refrigeration industries. To date, a lot of experimental material has been accumulated in this area. However, correct physical models are still missing because of the complexity of describing the hydrodynamics and heat and mass transfer, which requires use of experimental data. It is often that experimental results of different works contradict each other, and it is difficult to distinguish the main factors and dimensionless criteria. There is a global trend of reduction in the mass and size of heat exchangers, which necessitates intensification of transfer processes. This review critically examines various approaches and offers effective criteria for analyzing and summarizing the existing experimental data on film heat exchangers. The review shows that finning stabilizes the film flow and allows intensifying the heat transfer manifold, both during evaporation and boiling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Levich, V.G., Physicochemical Hydrodynamics, Englewood Clis: Prentice-Hall, 1962.

  2. Vorontsov, E.G. and Tananaiko, Yu.M., Teploobmen v zhidkostnykh plenkakh (Heat Transfer in Liquid Films), Kiev: Technika, 1972.

  3. Kutateladze, S.S. and Nakoryakov, V.E., Teplomassoobmen i volny v gazozhidkostnykh sistemakh (Heat and Mass Transfer and Waves in Gas-Liquid Systems), Novosibirsk: Nauka, 1984.

  4. Grigor’ev, V.A. and Krokhin Yu.I., Teplo i massoobmennye apparaty kriogennoi tekhniki (Heat and Mass Transfer Devices of Cryogenic Technology), Moscow: Energoizdat, 1982.

  5. Ganchev, B.G., Okhlazhdenie elementov yadernykh reaktorov stekayushchimi plenkami (Cooling of Nuclear Reactor Elements by Flowing Films), Moscow: Energoatomizdat, 1987.

  6. Plenochnaya teplo- i massoobmennaya apparatura (Film Heat and Mass Transfer apparatus), Olevsky, V.M., Ed., Moscow: Khimiya, 1988.

  7. Gimbutis, G., Teploobmen pri gravitatsionnom techenii plenki zhidkosti (Heat Exchange in Gravitational Flow of Liquid Film), Vilnius: Mokslas, 1988.

  8. Alekseenko, S.V., Nakoryakov, V.E., and Pokusaev, B.G., Wave Flow of Liquid Films, New York: Begell House, 1994

  9. Spravochnik po teploobmennikam (Handbook on Heat Exchangers), Moscow: Energoizdat, 1987.

  10. Rebrov, A.K., Gogonin, I.I., Kataev, A.N., and Sosunov, V.I., Energy-Saving Method of Thin-Film Fractionation and Regeneration of Petroleum Oil, Chem. Petrol. Engin., 1999, vol. 35, pp. 438–440.

  11. Nusselt, W., Die Oberflächencondensation Wasserdamfes, Z.V.D.I., 1916, vol. 60, pp. 541–575.

  12. Brauer, H., Strömung and Wärmeübergang bei Rüselfilmen, V.D.I. Forschungs Heat, 1956, vol. 457, pp. 1–40.

  13. Kholostykh, V.I., Blyakher, I.G., and Shekhtman, A.A., Flow of a Liquid Film over a Vertical Surface, J. Engin. Phys. Thermophys., 1972, vol. 22, pp. 348–351.

  14. Pokusaev, B.G. and Alekseenko, S.V., Two-Dimensional Waves on a Vertical Film of Fluid, in Nelineinye volonovye protsessy v dvukhfaznykh sredakh (Nonlinear Wave Processes in Two-Phase Media), Kutateladze, S.S., Ed., Novosibirsk: IT SO AN SSSR, 1977, pp. 158–172.

  15. Struve, H., Der Wärmeübergang an eı̈nen Verdampfenden Rieselfilm, V.D.I.-Forschunshheft, 1969, vol. 534, p. 36.

  16. Gogonin, I.I., Issledovanie teploobmena pri plenochnoi kondensatsii para (Research of Heat Transfer at Film Condensation of Steam), Novosibirsk: SB RAS, 2015.

  17. Parken, W.H., Fletcher, F.L., Sernas, S., and Han, J.C., Heat Transfer Through Falling Film Evaporation and Boiling on Horizontal Tubes, Trans. ASME, Ser. A, 1991, vol. 2, pp. 11–18.

  18. Chun, K.R. and Seban, R.A., Heat Transfer to Evaporating Liquid Films, Trans. ASME Ser. C, 1971, vol. 13, p. 71.

  19. Lorenz, J.J. and Yung, D.A., Note on Combined Boiling and Evaporation of Liquid on Horizontal Tubes, Trans. ASME, Ser. C, 1979, vol. 1, pp. 206–208.

  20. Chyu, M.C. and Bergles, A.E., An Analytical and Experimental Study of Falling-Film Evaporation on a Horizontal Tube, Trans. ASME, Ser. C, 1988, vol. 3, pp. 175–186.

  21. Owens, W.L., Transfer Coefficients for Horizontal Tubes, Fifth Annual Conf. on Ocean Thermal Energy Conversion, Miami Beach, FL., 1978.

  22. Rogers, J.T., Laminar Falling Film Flow and Heat Transfer Characteristics on Horizontal Tubes, Canadian J. Chem. Eng., 1981, vol. 59, pp. 213–222.

  23. Gogonin, I.I., Heat Transfer during Liquid Boiling in a Film Moving under Gravity, JEPT, 2010, vol. 83, pp. 821–825.

  24. Labuntsov, D.A., Approximate Theory of Heat Transfer at Developed Bubble Boiling, Izv. AN SSSR, Energet. Transp., 1963, vol. 1, p. 58.

  25. Gogonin, I.I., Teploobmen pri puzyr’kovom kipenii (Heat Transfer at Bubble Boiling), Novosibirsk: Nauka, 2018.

  26. Grigoriev, V.A., Pavlov, Yu.M., and Ametistov, E.V., Kipenie kriogennykh zhidkostei (Boiling of Cryogenic Liquids), Moscow: Energiya, 1977.

  27. Galin, N.M. and Kirillov, P.L., Teplomassoobmen (v yadernoi energetike) (Heat and Mass Transfer (In Nuclear Power Engineering)), Moscow: Energoatomizdat, 1987.

  28. Gogonin, I.I., The Dependence of Boiling Heat Transfer on the Properties and Geometric Parameters of Heat-Transfer Wall, High Temp., 2006, vol. 44, pp. 913–921.

  29. Danilova, G.N. and Dosov, V.G., Investigation of Heat Transfer during Evaporation and Boiling of Freon 12 in a Flowing Film, Kholodil’noe Oborud., 1979, vol. 8, pp. 39–42.

  30. Danilova, G.N., Bukin, V.G., and Dyundin, V.A., Research of Heat Transfer in Elements of Irrigated Evaporators, Kholodil’noe Oborud., 1976, vol. 6, pp. 21–25.

  31. Rychkov, A.I. and Pospelov, V.K., Research of Heat Transfer at Boiling of Sodium Hydrate Solution in a Thin Layer, Khim. Prom., 1959, vol. 3, pp. 426–429.

  32. Haase, B., Der Wärmeübergang am Sidenden Rieselfilm, Chem. Tech., 1970, vol. 22, pp. 283–287.

  33. Fujita, T. and Ueda, T., Heat Transfer to Falling Liquid Films and Film Breakdown-I Saturated Liquid Films with Nucleate Boiling, Int. J. Heat Transfer, 1978, vol. 21, pp. 109–118.

  34. Ueda, T., Inoue, M., and Nagatome, S., Critical Heat Flux and Droplet Entrainment Rate in Boiling of Falling Liquid Films, Int. J. Heat Mass Transfer, 1981, vol. 24, pp. 1257–1266.

  35. Vorontsov, E.G., Liquid Film Boiling on a Vertical Wall with Different Types of Roughness, Zh. Prikl. Khim., 1985, vol. 58, no. 4, pp. 808–813.

  36. Mudawwar, I.A., Incropera, T.A., and Incropera, F.P., Boiling Heat Transfer and Critical Heat Flux in Liquid Films Falling on Vertically—Mounted Heat Sources, Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 2083–2095.

  37. Serza, M. and Sernas, V., Nucleate Boiling in Thermally Developing and Fully Developed Laminar Falling Water Films, Trans. ASME. Ser. C., 1988, vol. 4, pp. 165–174.

  38. Matsekh, A.M. and Pavlenko, A. N., Features of Heat Exchange and Crisis Phenomena in Flowing Films of Cryogenic Liquid, Thermophys. Aeromech., 2005, vol. 1, pp. 105–109.

  39. Petrovichev, V.I., Kokorev, L.S., Didenko, A.Ya., and Dubrovsky, G.P., Drop Entrainment in Boiling of Thin Liquid Films, in Voprosy teplofiziki yadernykh reaktorov (Problems of Thermal Physics of Nuclear Reactors), Moscow: Atomizdat, 1969.

  40. Cerza, M. and Sernas, V.A., Bubble Growth Model for Nucleate Boiling in Thin Falling, Superheated, Laminar Water Films, Int. J. Heat Mass Transfer, 1985, vol. 28, pp. 1307–1316.

  41. Gogonin, I.I., Heat Transfer during Evaporation and Boiling of Film That Irrigates Bundle of Horizontal Tubes, Teor. Onsovy Khim. Tekhnolog., 2014, vol. 48, no. 1, pp. 113–116.

  42. Je-Chin Han and Fletcher, L.S., Falling Film Evaporation and Boiling in Circumferential and Axial Groves on Horizontal Tubes, Ind. Eng. Chem. Progress Des. Dev., 1985, vol. 24, no. 3, pp. 570–575.

  43. Fujita, Y. and Tsatsui, M., Experimental and Analytical Study of Evaporation Heat Transfer in Falling Films on Horizontal Tubes, Proc. 10th Int. Heat Transfer Conf., Brighton, U.K., 1994, vol. 6, pp. 175–180.

  44. Zhao, C.-Y., Jin, P.-H., Ji, W.-T., He, Y.-L. and Tao, W.-Q., Experimental Investigations of R134a and R123 Falling Film Evaporation on Enhanced Horizontal Tubes, Int. J. Refrig., 2017, vol. 75, pp. 190–203.

  45. Jin, P.-H., Zhang, Z., Mostafa, I., Zhao, C.-Y., Ji, W.-T., and Tao, W.-Q., Heat Transfer Correlations of Refrigerant Falling Film Evaporation on a Single Horizontal Smooth Tube, Int. J. Heat Mass Transfer, 2019, vol. 133, pp. 96–106.

  46. Roques, J.-F. and Thome, J.R., Falling Films on Arrays of Horizontal Tubes with R-134a, Part I: Boiling Heat Transfer Results for Four Types of Tubes, Heat Transfer Engin., 2007, vol. 28, pp. 398–414.

  47. Chinnov, E.A. and Sharina, I.A., Heat Transfer Enhancement in a Heated Liquid Film under the Action of External Artificial Perturbations, Techn. Phys. Lett., 2018, vol. 44, pp. 969–972.

  48. Yan, W.-M., Pan, C.-W., Yang, T.-F., and Ghalambaz, M., Experimental Study on Fluid Flow and Heat Transfer Characteristics of Falling Film over Tube Bundle, Int. J. Heat Mass Transfer, 2019, vol. 130, pp. 9–24.

  49. Åkesjö, A., Gourdon, M., Vamling, L., Innings, F., and Sasic, S., Experimental and Numerical Study of Heat Transfer in a Large-Scale Vertical Falling Film Pilot Unit, Int. J. Heat Mass Transfer, 2018, vol. 125, pp. 53–65.

  50. Rubinov, E.A. and Burdukov, A.P., The Heat-Transfer Process in Downflow of a Water Film along a Horizontal Tube under Vacuum, Chem. Petrol. Engin., 1977, vol. 13, pp. 129–131.

  51. Bressler, R.J. and Wyatt, P.W., Surface Wetting through Capillary Grooves, Trans. ASME. Ser. C, 1971, vol. 92, pp. 132–139.

  52. Nakoryakov, V.E., Misyura, S.Y., and Elistratov, S.L., The Behavior of Water Droplets on the Heated Surface, Int. J. Heat Mass Transfer, 2012, vol. 55, pp. 6609–6617.

  53. Misyura, S.Ya., Nucleate Boiling in Bidistillate Droplets, Int. J. Heat Mass Transfer, 2014, vol. 71, pp. 197–205.

  54. Gogonin, I.I. and Kabov, O.A., Influence of Capillary Liquid Retention on Heat Exchange during Condensation on Finned Tubes, Izv. SO RAN, Tekhn. Nauki, 1983, vol. 8, no. 2, pp. 3–9.

  55. Nakoryakov, V.E. and Grigorieva, N.I., On Joint Heat and Mass Transfer in Film Absorption, in Teploobmen i gidrogasodinamika pri kipenii i kondensatsii (Heat Transfer and Fluid Dynamics in Boiling and Condensation), Novosibirsk: IT SO AN SSSR, 1979.

  56. Pavlenko, A.N., Pecherkin, N.I., and Volodin, O.A., Teploobmen i krizisnye yavleniya v stekayushchikh plenkakh zhidkosti pri isparenii i kipenii (Heat Transfer and Crisis Phenomena in Falling Liquid Films at Evaporation and Boiling), Novosibirsk: Nauka, 2018.

  57. Wen, T., Lu, L., He, W., and Min, Y., Fundamentals and Applications of CFD Technology on Analyzing Falling Film Heat and Mass Exchangers: A Comprehensive Review, Appl. Energy, 2020, vol. 261, p. 114473.

  58. Chien, L.H., Tsai, Y.L., and Chang, C.H., A Study of Pool Boiling and Falling-Film Vaporization with R-245fa/Oil Mixtures on Horizontal Tubes, Int. J. Heat Mass Transfer, 2019, vol. 133, pp. 940–950.

  59. Wang, J., Chen, X., Lu, T., Chen, X., Shen, S., and Liu, B., Three-Dimensional Film Thickness Distribution of Horizontal Tube Falling Film with Column Flow, Appl. Therm. Eng., 2019, vol. 154, pp. 140–149.

  60. Zhao, C.Y., Ji, W.T., Jin, P.H., Zhong, Y.J., and Tao, W.Q., Hydrodynamic Behaviors of the Falling Film Flow on a Horizontal Tube and Construction of New Film Thickness Correlation, Int. J. Heat Mass Transfer, 2018, vol. 119, pp. 564–576.

  61. Hu, P., Huang, X., Bao, K., and Zhu, G., Experiment Study on Film Width and Thickness of Free Falling Water Film on a Large Inclined Plate, Nucl. Engin. Design, 2020, vol. 358, p. 110445.

  62. Lin, S., Liu, X., and Li, X., The Spatial Distribution of Liquid Film Thickness outside the Horizontal Falling Film Tube, Int. J. Heat Mass Transfer, 2019, vol. 143, p. 118577.

  63. Zhou, Y.H., Cai, Z., Ning, Z., and Bi, M., Numerical Simulation of Double-Phase Coupled Heat Transfer Process of Horizontal-Tube Falling Film Evaporation, Appl. Therm. Eng., 2017, vol. 118, pp. 33–40.

  64. Seyed, M.H., Mohammad, N., and Ramin, K., CFD Simulation of Water Vapor Absorption in Laminar Falling Film Solution of Water-LiBr-Drop and Jet Modes, Appl. Therm. Eng., 2017, vol. 115, pp. 860–873.

  65. Qiu, Q.G., Meng, C.J., Quan, S.L., and Wang, W., 3-D Simulation of Flow Behavior and Film Distribution outside a Horizontal Tube, Int. J. Heat Mass Transfer, 2017, vol. 17, pp. 1028–1034.

  66. Li, H., Yi, F., Li X., Pavlenko, A.N., and Gao, X., Numerical Simulation for Falling Film Flow Characteristics of Refrigerant on the Smooth and Structured Surfaces, J. Eng. Therm., 2018, vol. 28, pp. 1–9.

  67. Lee, W.C. and Rose, J.W., Forced Convection Film Condensation on a Horizontal Tube with and without Non-Condensing Gases, Int. J. Heat Mass Transfer, 1984, vol. 7, pp. 519–528.

  68. Rose, J.W., Approximate Equation for Forced Convection Condensation in the Presence of a Non-Condensing Gas on a Flat Plate and Horizontal Tube, Int. J. Heat Mass Transfer, 1980, vol. 23, pp. 539–546.

  69. Chyu, M.C. and Bergles, A.E., An Analytical and Experimental Study of Falling-Film Evaporation on a Horizontal Tube, Trans. ASME, Ser. C, 1988, vol. 3, pp. 175–186.

  70. Maltsev, L.I., and Balakleevsky, Yu.I., Flat Liquid Jets, Thermoph. Aeromech., 2000, vol. 7, no. 3, pp. 217–224.

  71. Rebrov, A.K., Gogonin, I.I., Kataev, A.N., and Sosunov, V.I., Energy-Saving Method of Thin-Film Fractionation and Oil Regeneration, Chem. Petrol. Engin., 1999, vol. 8, pp. 17–19.

  72. Gogonin, I.I., RF Patent No. 2406749 State Register, December 20, 2010.

  73. Zhukov, V.I., Pavlenko, A.N., and Bessmeltsev, V.P., Heat Transfer at Evaporation/Boiling in the Thin Horizontal Liquid Layer on Microstructured Surfaces under Low Pressures, J. Phys.: Conf. Ser., 2019, vol. 1369, p. 012007.

  74. Åkesjö, A., Gourdon, M., Vamling, L., Innings, F., and Sasic, S., Modified Surfaces to Enhance Vertical Falling Film Heat Transfer—An Experimental and Numerical Study, Int. J. Heat Mass Transfer, 2019, vol. 131, pp. 237–251.

  75. Sagan’, I.I. and Karas’, V.A., Heat Transfer at Boiling of Water and Sugar Solutions Flowing down Horizontal Tubes, Izv. Vuzov, Pishch. Tekhnol., 1972, vol. 2, pp. 113–116.

Download references

Funding

This work was carried out within the framework of the state assignment for Kutateladze Institute of Thermophysics SB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ya. Misyura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogonin, I.I., Misyura, S.Y. Film Heat Exchangers: Hydrodynamics and Heat Transfer (Review). J. Engin. Thermophys. 29, 686–710 (2020). https://doi.org/10.1134/S1810232820040141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232820040141

Navigation