Skip to main content
Log in

Advancement of Mechanical Engineering in Extreme Environments

  • Review Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

This article has been updated

Abstract

With the continuing increase in the use of technology in the modern world, the environmental demands placed on mechanical products have become increasingly harsh, especially in the fields of industrial equipment, vehicles, robotics, medical equipment, and weapons. For the development of mechanical engineering, it is essential to ensure reliable performance, high efficiency, and long durability in extreme environments (extremes of temperature, pressure, corrosion, vibration, etc.). The mechanical properties of the materials used to manufacture the components directly influence the component’s characteristics in extreme environments. Mechanical design and manufacturing processes are also key factors that affect the reliability of mechanisms. With the development of composite materials, computer technology, and the 4th industrial revolution, extreme environment technology has also progressed rapidly. Engineering for extreme environments is considered as a very important field in the green and environmental-friendly technology. This is because the shortened working life of machinery under such extremely harsh environments leads to higher energy consumption and more non-recyclable wastes. This paper reviews the developments related to novel extreme environment technologies in terms of materials, design, and manufacturing that have come about in recent years. Moreover, an analysis of related articles, patents, and the economy of this field is carried out and a perspective on the developmental trend is put forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 26 February 2021

    The email address of Choon-Man Lee has been updated

References

  1. Cai, W., Bellon, P., & Beaudoin, A. J. (2019). Probing the subsurface lattice rotation dynamics in bronze after sliding wear. Scripta Materialia, 172, 6–11.

    Google Scholar 

  2. Lee, J., Beach, J., Bellon, P., & Averback, R. S. (2017). High thermal coarsening resistance of irradiation-induced nanoprecipitates in Cu-Mo-Si alloys. Acta Materialia, 132, 432–443.

    Google Scholar 

  3. Arshad, S. N., Lach, T. G., Ivanisenko, J., Setman, D., Bellon, P., Dillon, S. J., & Averback, R. S. (2015). Self-organization of Cu-Ag during controlled severe plastic deformation at high temperatures. Journal of Materials Research, 30(12), 1943–1956.

    Google Scholar 

  4. Ross, P., Küchemann, S., Derlet, P. M., Yu, H., Arnold, W., Liaw, P., et al. (2017). Linking macroscopic rejuvenation to nano-elastic fluctuations in a metallic glass. Acta Materialia, 138, 111–118.

    Google Scholar 

  5. Sparks, G., & Maaß, R. (2018). Nontrivial scaling exponents of dislocation avalanches in microplasticity. Physical Review Materials., 2(12), 120601. https://doi.org/10.1103/PhysRevMaterials.2.120601

    Article  Google Scholar 

  6. Ma, Y., Feng, L., Tang, C., Ouyang, J., & Dillon, S. J. (2018). Effects of commonly evolved solid-electrolyte-interphase (SEI) reaction product gases on the cycle life of li-ion full cells. Journal of the Electrochemical Society, 165(13), A3084–A3094.

    Google Scholar 

  7. Ban, J., Lee, K., Hwang, G., Kim, H., Lee, K., Vang, M., et al. (2013). Study on high temperature processing of biocompatible Ti-10Ta-10Nb alloys. International Journal of Precision Engineering and Manufacturing, 14(6), 1099–1102.

    Google Scholar 

  8. Liu, J., Peng, Q., Huang, Z., Liu, W., & Li, H. (2018). Enhanced sliding mode control and online estimation of optimal slip ratio for railway vehicle braking systems. International Journal of Precision Engineering and Manufacturing, 19(5), 655–664.

    Google Scholar 

  9. Zhang, Y., Ye, P., Zhang, H., & Zhao, M. (2018). A local and analytical curvature-smooth method with jerk-continuous feedrate scheduling along linear toolpath. International Journal of Precision Engineering and Manufacturing, 19(10), 1529–1538.

    Google Scholar 

  10. Cho, C., Lee, J., Lee, Y., & Choi, M. (2011). Determining the passive region of the multirate wave transform on the practical implementation. International Journal of Precision Engineering and Manufacturing, 12(6), 975–981.

    Google Scholar 

  11. Lee, S., Lee, S., Na, Y., Ahn, B., Jung, H., Cheng, S. S., et al. (2019). Shock absorber mechanism based on an SMA spring for lightweight exoskeleton applications. International Journal of Precision Engineering and Manufacturing, 20(9), 1533–1541.

    Google Scholar 

  12. Chen, Z., Zhang, Z., Li, Y., Su, X., & Yuan, X. (2019). Vortex dynamics based analysis of internal crossflow effect on film cooling performance. International Journal of Heat and Mass Transfer, 145, 118757. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118757

    Article  Google Scholar 

  13. Zhang, C., Wei, J., Wang, Z., Yuan, Z., Fei, C., & Lu, C. (2019). Creep-based reliability evaluation of turbine blade-tip clearance with novel neural network regression. Materials., 12(21), 3552. https://doi.org/10.3390/ma12213552.

    Article  Google Scholar 

  14. Mastori, H., Piluso, P., Haquet, J., Denoyel, R., & Antoni, M. (2019). Limestone-siliceous and siliceous concretes thermal damaging at high temperature. Construction and Building Materials, 228, 116671. https://doi.org/10.1016/j.conbuildmat.2019.08.052.

    Article  Google Scholar 

  15. Groppi, F., Sabbioni, E., & Manenti, S. (2019). The role of nuclear chemistry and radiochemistry in nanosafety studies. Radiation Effects and Defects in Solids, 174(11–12), 965–972.

    Google Scholar 

  16. Chouchane, M., Rucci, A., Lombardo, T., Ngandjong, A. C., & Franco, A. A. (2019). Lithium ion battery electrodes predicted from manufacturing simulations: Assessing the impact of the carbon-binder spatial location on the electrochemical performance. Journal of Power Sources, 444, 227285. https://doi.org/10.1016/j.jpowsour.2019.227285.

    Article  Google Scholar 

  17. 3mez, F. (2011). Extreme environment. 570–572.

  18. Banerjee, A. K. S. T. (2017). Materials under extreme conditions : recent trends and future prospects. Materials under extreme conditions.

  19. Qin, Z., Wu, Y. T., Eizad, A., Lee, K. H., & Lyu, S. K. (2019). Design and evaluation of two-stage planetary gearbox for special-purpose industrial machinery. Journal of Mechanical Science and Technology, 33(12), 5943–5950.

    Google Scholar 

  20. Zheng, C., Xu, G., Jeong, J., Cha, S. W., Park, Y., & Lim, W. (2014). Power source sizing of fuel cell hybrid vehicles considering vehicle performance and cost. International Journal of Precision Engineering and Manufacturing, 15(3), 527–533.

    Google Scholar 

  21. Qin, Z., Wu, Y. T., Eizad, A., Jeon, N. S., Kim, D. S., & Lyu, S. K. (2019). A study on simulation based validation of optimized design of high precision rotating unit for processing machinery. International Journal of Precision Engineering and Manufacturing, 20(9), 1601–1609.

    Google Scholar 

  22. Park, H., Ahn, K., Park, M., & Lee, S. (2018). Study on robust lateral controller for differential GPS-based autonomous vehicles. International Journal of Precision Engineering and Manufacturing, 19(3), 367–376.

    Google Scholar 

  23. Qin, Z., Wu, Y. T., & Lyu, S. K. (2018). A review of recent advances in design optimization of gearbox. International Journal of Precision Engineering and Manufacturing, 19(11), 1753–1762.

    Google Scholar 

  24. Anonymous. (2020). Mechanical engineering. Merriam-Webster.com Dictionary, Accessed 2 Mar.

  25. Yu, J., Feng, H., Tang, L., Pang, Y., Zeng, G., Lu, Y., et al. (2020). Metal-free carbon materials for persulfate-based advanced oxidation process: Microstructure, property and tailoring. Progress in Materials Science, 111, 100654. https://doi.org/10.1016/j.pmatsci.2020.100654.

    Article  Google Scholar 

  26. Ma, C., Xu, T., & Wang, Y. (2020). Advanced carbon nanostructures for future high performance sodium metal anodes. Energy Storage Materials, 25, 811–826.

    Google Scholar 

  27. Kim, K., Szulejko, J. E., Raza, N., Kumar, V., Vikrant, K., Tsang, D. C. W., et al. (2019). Identifying the best materials for the removal of airborne toluene based on performance metrics—A critical review. Journal of Cleaner Production, 241, 118408. https://doi.org/10.1016/j.jclepro.2019.118408.

    Article  Google Scholar 

  28. Ma, R., Lin, G., Zhou, Y., Liu, Q., Zhang, T., Shan, G., et al. (2019). A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. npj Computational Materials, 5, 78. https://doi.org/10.1038/s41524-019-0210-3.

    Article  Google Scholar 

  29. Wu, W., Hu, W., Qian, G., Liao, H., Xu, X., & Berto, F. (2019). Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review. Materials & Design, 180, 107950. https://doi.org/10.1016/j.matdes.2019.107950.

    Article  Google Scholar 

  30. Wang, C., & Wang, Y. (2018). The mechanical design of a hybrid intelligent hinge with shape memory polymer and spring sheet. Composites Part B: Engineering, 134, 1–8.

    Google Scholar 

  31. Fronek, A., Nosonovsky, M., Barger, B., & Avdeev, I. (2012). Tribological and mechanical design considerations for wave energy collecting devices. Green Energy and Technology, 49, 607–619.

    Google Scholar 

  32. Kanbur, B. B., Suping, S., & Duan, F. (2020). Design and optimization of conformal cooling channels for injection molding: a review. International Journal of Advanced Manufacturing Technology, 106(7–8), 3253–3271.

    Google Scholar 

  33. Zia, M. K., Pervaiz, S., Anwar, S., & Samad, W. A. (2019). Reviewing sustainability interpretation of electrical discharge machining process using triple bottom line approach. International Journal of Precision Engineering and Manufacturing, 6(5), 931–945.

    Google Scholar 

  34. Kim, S. H., Nam, E., Ha, T. I., Hwang, S., & LeeParkMin, J. H. S. B. (2019). Robotic machining: A Review of recent progress. International Journal of Precision Engineering and Manufacturing, 20(9), 1629–1642.

    Google Scholar 

  35. Mehrpouya, M., Gisario, A., & Elahinia, M. (2018). Laser welding of NiTi shape memory alloy: A review. Journal of Manufacturing Processes, 31, 162–186.

    Google Scholar 

  36. Zafer, A., & Yadav, S. (2018). Design and development of strain gauge pressure transducer working in high pressure range of 500 MPa using autofrettage and finite element method. International Journal of Precision Engineering and Manufacturing, 19(6), 793–800.

    Google Scholar 

  37. Im, J., & KangShinHwang, S. K. T. (2017). Prediction of onset and propagation of damage in the adhesive joining of a dome-separated composite pressure vessel including temperature effects. International Journal of Precision Engineering and Manufacturing, 18(12), 1795–1804.

    Google Scholar 

  38. Zhao, M., Ji, X., & Liang, S. Y. (2019). Micro-grinding temperature prediction considering the effects of crystallographic Orientation and the strain induced by phase transformation. International Journal of Precision Engineering and Manufacturing, 20(11), 1861–1876.

    Google Scholar 

  39. Abbas, M., & Shafiee, M. (2020). An overview of maintenance management strategies for corroded steel structures in extreme marine environments. Marine Structures, 71, 102718. https://doi.org/10.1016/j.marstruc.2020.102718.

    Article  Google Scholar 

  40. Thenuwara, A. C., Shetty, P. P., & McDowell, M. T. (2019). Distinct nanoscale interphases and morphology of lithium metal electrodes Operating at low temperatures. Nano Letters, 19(12), 8664–8672.

    Google Scholar 

  41. Barati, F., Latifi, M., Far, E. M., Mosallanejad, M. H., & Saboori, A. (2019). Novel AM60-SiO2 nanocomposite produced via ultrasound-assisted casting; production and characterization. Materials, 12(23), 3976. https://doi.org/10.3390/ma12233976.

    Article  Google Scholar 

  42. Tan, G., Zhang, J., Zheng, L., Jiao, D., Liu, Z., Zhang, Z., & Ritchie, R. O. (2019). Nature-inspired nacre-like composites combining human tooth-matching elasticity and hardness with exceptional damage tolerance. Advanced Materials, 31(52), 1904603. https://doi.org/10.1002/adma.201904603

    Article  Google Scholar 

  43. Kim, S., Lee, J., Roh, C., Eun, J., & Kang, C. (2019). Evaluation of carbon fiber and p-aramid composite for industrial helmet using simple cross-ply for protecting human heads. Mechanics of Materials, 139, 103203. https://doi.org/10.1016/j.mechmat.2019.103203.

    Article  Google Scholar 

  44. Reddy, S. P., Chandrasekhara Rao, P. V., & Kolli, M. (2020). Effect of reinforcement on compacting characteristics of aluminum/10-Al2O3/fly ash metal matrix composite. Journal of Testing and Evaluation, 48(2), 955–969. https://doi.org/10.1520/JTE20170505

    Article  Google Scholar 

  45. Smetkin, A. A., Oglezneva, S. A., Kalinin, K. V., & Khanipov, E. F. (2019). Structure and properties of corrosion-resistant steels fabricated by selective laser melting. Russian Journal of Non-Ferrous Metals, 60(6), 770–774.

    Google Scholar 

  46. Deutscher, M., Tran, N. L., & Scheerer, S. (2019). Experimental investigations on the temperature increase of ultra-high performance concrete under fatigue loading. Applied Sciences, 9(19), 4087. https://doi.org/10.3390/app9194087.

    Article  Google Scholar 

  47. Decker, R. F., Berman, T. D., Miller, V. M., Jones, J. W., Pollock, T. M., & LeBeau, S. E. (2019). Alloy Design and Processing Design of Magnesium Alloys Using 2nd Phases. JOM Journal of the Minerals Metals and Materials Society, 71(7), 2219–2226.

    Google Scholar 

  48. Guo, N. N., Wang, L., Luo, L. S., Li, X. Z., Su, Y. Q., Guo, J. J., & Fu, H. Z. (2015). Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy. Materials and Design, 81, 87–94.

    Google Scholar 

  49. Han, Z. D., Chen, N., Zhao, S. F., Fan, L. W., Yang, G. N., Shao, Y., & Yao, K. F. (2017). Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys. Intermet, 84, 153–157.

    Google Scholar 

  50. Senkov, O. N., Wilks, G. B., Scott, J. M., & Miracle, D. B. (2011). Mechanical properties of Nb25Mo25Ta 25W25 and V20Nb20Mo 20Ta20W20 refractory high entropy alloys. Intermet, 19(5), 698–706.

    Google Scholar 

  51. Senkov, O. N., Senkova, S. V., Miracle, D. B., & Woodward, C. (2013). Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system. Materials Science and Engineering A, 565, 51–62.

    Google Scholar 

  52. Roh, A., Kim, D., Nam, S., Kim, D., Kim, H., Lee, K., et al. (2020). NbMoTaW refractory high entropy alloy composites strengthened by in-situ metal-non-metal compounds. Journal of Alloys and Compounds, 822, 153423.

    Google Scholar 

  53. Pingale, A. D., Belgamwar, S. U., & Rathore, J. S. (2020). Synthesis and characterization of Cu–Ni/Gr nanocomposite coatings by electro-co-deposition method: effect of current density. Bulletin of Materials Science, 43(1), 66. https://doi.org/10.1007/s12034-019-2031-x.

    Article  Google Scholar 

  54. Reddy, A. P., Krishna, P. V., & Rao,R. N. (2020). Mechanical and wear properties of aluminum-based nanocomposites fabricated through ultrasonic assisted stir casting. Journal of Testing and Evaluation, 48(4), 3035-3056. https://doi.org/10.1520/JTE20170560.

  55. Awate, P. P., & Barve, S. B. (2019). Formation and characterization of aluminium metal matrix nanocomposites. International Journal of Mechanical and Production Engineering Research and Development, 9(6), 933–942.

    Google Scholar 

  56. Golshekan, M., & Shirini, F. (2019). Corrosion protection by epoxy/poly(aniline-co-pyrrole)/ZnO nanocomposite coating. Journal of Applied Polymer Science, 136(48), 48265. https://doi.org/10.1002/app.48265

    Article  Google Scholar 

  57. Safavi, M. S., & Rasooli, A. (2019). Ni-P-TiO2 nanocomposite coatings with uniformly dispersed Ni3Ti intermetallics: effects of TiO2 nanoparticles concentration. Surface Engineering, 35(12), 1070–1080.

    Google Scholar 

  58. Shahrdami, L., Sedghi, A., & Shaeri, M. H. (2019). Microstructure and mechanical properties of Al matrix nanocomposites reinforced by different amounts of CNT and SiCW. Composites Part B: Engineering, 175, 107081. https://doi.org/10.1016/j.compositesb.2019.107081

    Article  Google Scholar 

  59. Ramezanalizadeh, H. (2020). Fabrication and characterization of an Al-based nanocomposite with high specific strength and good elongation using large amount CMA nanoparticles. Journal of Alloys and Compounds, 822, 153667.

    Google Scholar 

  60. Souza, C. A. C., Ribeiro, D. V., & Kiminami, C. S. (2016). Corrosion resistance of Fe-Cr-based amorphous alloys: an overview. Journal of non-crystalline solids, 442, 56–66.

    Google Scholar 

  61. Suryanarayana, C., & Inoue, A. (2013). Iron-based bulk metallic glasses. International Materials Reviews, 58(3), 131–166.

    Google Scholar 

  62. Guo, S. F., Chan, K. C., Xie, S. H., Yu, P., Huang, Y. J., & Zhang, H. J. (2013). Novel centimeter-sized Fe-based bulk metallic glass with high corrosion resistance in simulated acid rain and seawater. Journal of non-crystalline solids, 369, 29–33.

    Google Scholar 

  63. Guo, W., Wu, Y., Zhang, J., Hong, S., Li, G., Ying, G., et al. (2014). Fabrication and characterization of thermal-sprayed Fe-based amorphous/nanocrystalline composite coatings: an overview. Journal of Thermal Spray Technology, 23(7), 1157–1180.

    Google Scholar 

  64. Coimbrão, D. D., Zepon, G., Koga, G. Y., Godoy Pérez, D. A., Paes de Almeida, F. H., Roche, V., et al. (2020). Corrosion properties of amorphous, partially, and fully crystallized Fe68Cr8Mo4Nb4B16 alloy. Journal of Alloys and Compounds, 826, 154123.

    Google Scholar 

  65. Harris,P., Wintterer,M., Jasper,D., Linke,B., Brecher,C. & Spence, S. (2019). Design and Development of a High Efficiency Air Turbine Spindle for Small-Part Machining. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(5), 915-928. https://doi.org/10.1007/s40684-019-00105-5.

  66. Pantano, A., Tucciarelli, T., Montinaro, N., & Mancino, A. (2020). Design of a telescopic tower for wind energy production with reduced environmental impact. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(1), 119–130.

    Google Scholar 

  67. Dang, T. D., Phan, C. B., & Ahn, K. K. (2019). Design and investigation of a novel point absorber on performance optimization mechanism for wave energy converter in heave mode. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(3), 477–488.

    Google Scholar 

  68. Kim, S., Kim, J., Kim, Y., Yang, S., & Lee, H. (2019). A study of electromagnetic vibration energy harvesters: Design optimization and experimental validation. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(4), 779–788.

    Google Scholar 

  69. Jang, S., Goh, C. H., & Choi, H. (2015). Multiphase design exploration method for lightweight structural design: Example of vehicle mounted antenna-supporting structure. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(3), 281–287.

    Google Scholar 

  70. Jouilel,N., Radouani,M. & El Fahime, B. (2019). Wind Turbine’s Gearbox Aided Design Approach Using Bond Graph Methodology and Monte Carlo Simulation. International Journal of Precision Engineering and Manufacturing-Green Technology,. https://doi.org/10.1007/s40684-019-00170-w.

  71. Shi, W., Park, H. C., Chung, C. W., Shin, H. K., Kim, S. H., Lee, S. S., & Kim, C. W. (2015). Soil-structure interaction on the response of jacket-type offshore wind turbine. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(2), 139–148.

    Google Scholar 

  72. Qin, Z., Son, H. I., & Lyu, S. K. (2018). Design of anti-vibration mounting for 140A class alternator for vehicles. Journal of Mechanical Science and Technology, 32(11), 5233–5239.

    Google Scholar 

  73. Qin, Z., Zhang, Q., Wu, Y. T., Eizad, A., & Lyu, S. K. (2019). Experimentally validated geometry modification simulation for improving noise performance of CVT gearbox for vehicles. International Journal of Precision Engineering and Manufacturing, 20(11), 1969–1977.

    Google Scholar 

  74. Kwak, H., & SeongKim, H. C. (2019). Design of laminated seal in cryogenic triple-offset butterfly valve used in LNG marine engine. International Journal of Precision Engineering and Manufacturing, 20(2), 243–253.

    Google Scholar 

  75. Qin, Z., Wu, Y., Huang, A., Lyu, S., & Sutherland, J. (2020). Theoretical design of a novel vibration energy absorbing mechanism for cables. Applied Sciences, 10, 5309.

    Google Scholar 

  76. Park, Y. G., Yoon, S. Y., Seo, Y. M., Ha, M. Y., Park, Y. M., & Koo, B. S. (2020). A study on the optimal arrangement of tube bundle for the performance enhancement of a steam turbine surface condenser. Applied Thermal Engineering, 166, 114681.

    Google Scholar 

  77. Benkedjouh, T., Medjaher, K., Zerhouni, N., & Rechak, S. (2015). Health assessment and life prediction of cutting tools based on support vector regression. Journal of Intelligent Manufacturing, 26(2), 213–223.

    Google Scholar 

  78. Shrouf, F., Ordieres, J., & Miragliotta, G. (2014). Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm. In: IEEE International Conference on Industrial Engineering and Engineering Management, 2015-January, pp 697–701.

  79. Arisoy, Y. M., & Özel, T. (2015). Machine learning based predictive modeling of machining induced microhardness and grain size in Ti-6Al-4V alloy. Materials and Manufacturing Processes, 30(4), 425–433.

    Google Scholar 

  80. Wen, L., Li, X., Gao, L., & Zhang, Y. (2018). A new convolutional neural network-based data-driven fault diagnosis method. IEEE Transactions on Industrial Electronics, 65(7), 5990–5998.

    Google Scholar 

  81. Yan, J., Meng, Y., Lu, L., & Guo, C. (2017). Big-data-driven based intelligent prognostics scheme in industry 4.0 environment. In: Prognostics and System Health Management Conference, PHM-Harbin-Proc..

  82. Bergmann, S., Feldkamp, N., & Strassburger, S. (2017). Emulation of control strategies through machine learning in manufacturing simulations. Journal of Simulation., 11(1), 38–50.

    Google Scholar 

  83. Kim, D., Kim, T. J. Y., Wang, X., Kim, M., Quan, Y., Oh, J. W., et al. (2018). Smart machining process using machine learning: A review and perspective on machining industry. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(4), 555–568.

    Google Scholar 

  84. Zhu, Z., Dhokia, V. G., Nassehi, A., & Newman, S. T. (2013). A review of hybrid manufacturing processes - State of the art and future perspectives. Int J Computer Integr Manuf, 26(7), 596–615.

    Google Scholar 

  85. Dandekar, C. R., Shin, Y. C., & Barnes, J. (2010). Machinability improvement of titanium alloy (Ti-6Al-4V) via LAM and hybrid machining. International Journal of Machine Tools and Manufacture, 50(2), 174–182.

    Google Scholar 

  86. Holtkamp, J., Roesner, A., & Gillner, A. (2010). Advances in hybrid laser joining. International Journal of Advanced Manufacturing Technology, 47(9–12), 923–930.

    Google Scholar 

  87. Ahn, J. W., Woo, W. S., & Lee, C. M. (2016). A study on the energy efficiency of specific cutting energy in laser-assisted machining. Applied Thermal Engineering, 94, 748–753.

    Google Scholar 

  88. Choi, J. Y., & Lee, C. M. (2012). Evaluation of cutting force and surface temperature for round and square member in laser assisted turn-mill. Applied Mechanics and Materials, 229–231, 718–722.

    Google Scholar 

  89. Kumar, M., & Melkote, S. N. (2012). Process capability study of laser assisted micro milling of a hard-to-machine material. Journal of Manufacturing Processes, 14(1), 41–51.

    Google Scholar 

  90. Bermingham, M. J., Schaffarzyk, P., Palanisamy, S., & Dargusch, M. S. (2014). Laser-assisted milling strategies with different cutting tool paths. International Journal of Advanced Manufacturing Technology, 74(9–12), 1487–1494.

    Google Scholar 

  91. Pu, Y., Zhao, Y., Zhang, H., Zhao, G., Meng, J., & Song, P. (2020). Study on the three-dimensional topography of the machined surface in laser-assisted machining of Si3N4 ceramics under different material removal modes. Ceramics International, 46(5), 5695–5705.

    Google Scholar 

  92. Ren, G., Song, H., Dan, J., Li, J., Pan, P., Yang, Z., et al. (2020). Thermal analysis and machinability for laser-assisted machining of fused silica. International Journal of Heat and Mass Transfer, 148, 119078. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119078.

    Article  Google Scholar 

  93. Jung, K., Kawahito, Y., & Katayama, S. (2014). Mechanical property and joining characteristics of laser direct joining of CFRP to polyethylene terephthalate. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(1), 43–48.

    Google Scholar 

  94. Park, K., Yang, G., Lee, M., Jeong, H., Lee, S., & Lee, D. Y. (2014). Eco-friendly face milling of titanium alloy. International Journal of Precision Engineering and Manufacturing, 15(6), 1159–1164.

    Google Scholar 

  95. Rahman Rashid, R. A., Sun, S., Palanisamy, S., Wang, G., & Dargusch, M. S. (2014). A study on laser assisted machining of Ti10V2Fe3Al alloy with varying laser power. The International Journal of Advanced Manufacturing Technology, 74(1), 219–224.

    Google Scholar 

  96. Chu, W., Kim, C., Lee, H., Choi, J., Park, J., Song, J., et al. (2014). Hybrid manufacturing in micro/nano scale: A Review. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(1), 75–92.

    Google Scholar 

  97. Bermingham, M., Sim, W., Kent, D., Gardiner, S., & Dargusch, M. S. (2015). Tool life and wear mechanisms in laser assisted milling Ti-6Al-4V. Wear, 322, 151–163.

    Google Scholar 

  98. Leshock, C. E., Kim, J., & Shin, Y. C. (2001). Plasma enhanced machining of Inconel 718: Modeling of workpiece temperature with plasma heating and experimental results. International Journal of Machine Tools and Manufacture, 41(6), 877–897.

    Google Scholar 

  99. Novak, J. W., Shin, Y. C., & Incropera, F. P. (1997). Assessment of Plasma Enhanced Machining for Improved Machinability of Inconel 718. Journal of Manufacturing Science & Engineering ASME, 119(1), 125–129.

    Google Scholar 

  100. Liu, T., Xia, X., Wu, W., Yin, C., Wang, Y., Tian, H., & Kong, W. (2017). Experimental investigations for electric heating rotary stretch bending process of extruded Ti-6Al-4V alloy profile with T-section. Procedia Engineering, 207, 747–752.

    Google Scholar 

  101. Woo, W., & Lee, C. (2015). A study of the machining characteristics of AISI 1045 steel and Inconel 718 with a cylindrical shape in laser-assisted milling. Applied Thermal Engineering, 91, 33–42.

    Google Scholar 

  102. Hwang, S., Oh, W., & Lee, C. (2016). A study of preheating characteristics according to various preheating methods for laser-assisted machining. International Journal of Advanced Manufacturing Technology, 86(9–12), 3015–3024.

    Google Scholar 

  103. Oh, W., & Lee, C. (2019). A study on laser assisted acute angle milling strategies and preheating distance. Journal of Manufacturing Processes, 44, 216–225.

    Google Scholar 

  104. Erdenechimeg, K., Jeong, Hm., & Lee, C. (2019). A study on the laser-assisted machining of carbon fiber reinforced silicon carbide. Materials, 12(13), 2061.

    Google Scholar 

  105. Moon, S., & Lee, C. (2018). A study on the machining characteristics using plasma assisted machining of AISI 1045 steel and Inconel 718. International Journal of Mechanical Sciences, 142–143, 595–602. https://doi.org/10.1016/j.ijmecsci.2018.05.020.

    Article  Google Scholar 

  106. Lee, Y., & Lee, C. (2019). A study on optimal machining conditions and energy efficiency in plasma assisted machining of Ti-6Al-4V. Materials, 12, 2590.

    Google Scholar 

  107. Kakinuma, Y., Mori, M., Oda, Y., Mori, T., Kashihara, M., Hansel, A., & Fujishima, M. (2016). Influence of metal powder characteristics on product quality with directed energy deposition of Inconel 625. CIRP Annals Manufacturing Technology, 65, 209–212.

    Google Scholar 

  108. Dinovitzer, M., Chen, X., Laliberte, J., Huang, X., & Frei, H. (2019). Effect of wire and arc additive manufacturing (WAAM) process parameters on bead geometry and microstructure. Additive Manufacturing, 26, 138–146.

    Google Scholar 

  109. Campatelli, G., Montevecchi, F., Venturini, G., Ingarao, G., & Priarone, P. C. (2020). Integrated WAAM-subtractive versus pure subtractive manufacturing approaches: An energy efficiency comparison. International Journal of Precision Engineering and Manufacturing-Green Technology, 7, 1–11.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Regional Leading Research Center of NRF and MOCIE (NRF- 2019R1A5A808320112).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung-Ki Lyu or Choon-Man Lee.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Z., Wu, YT., Eizad, A. et al. Advancement of Mechanical Engineering in Extreme Environments. Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 1767–1782 (2021). https://doi.org/10.1007/s40684-020-00295-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-020-00295-3

Keywords

Navigation