Skip to main content
Log in

Mercury Content in Water Beetles (Coleoptera: Dytiscidae, Hydrophilidae) of Different Size Classes

  • AQUATIC TOXICOLOGY
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

The content of mercury in adult water beetles is studied in beaver ponds located in the Polist-Lovat Swamp System (Novgorod oblast). A total of 201 individuals of nine species of the family Dytiscidae and one species of the family Hydrophilidae (size classes II and III) are studied. It is revealed that the mercury content in beetles of size class II differs significantly between species (χ2 = 32.93, p < 0.01). Maximum concentrations were found in Graphoderus cinereus (0.259 ± 0.091 µg/g dry weight), while minimum concentrations were recorded in Hydrochara caraboides (0.091 ± 0.020 µg/g dry weight). There were no significant differences in the mercury content between the III size class beetles (largest beetles) of the studied species. In beetles of size class II, the concentration of mercury decreases in the body with an increase in the body weight (Kendall rank coefficient τ = –0.31, p < 0.01). The mercury content in the body parts of beetles of the genus Dytiscus increases in order: the elytra and wings-legs-head and thorax-abdomen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Archangelsky, M., Beutel, R.B., and Komarek, A., Hydrophilidae (Chapter 12.1), in Handbook of Zoology, vol. 1: Coleoptera, Beetles, Berlin: De Gryuter, 2016, p. 236.

  2. Arnott, S.E., Jackson, A., and Alarie, Y., The distribution and potential effects of water beetles in lakes recovering from acidification, J. North Am. Bentholog. Soc., 2006, vol. 25, no. 4, p. 811.

    Article  Google Scholar 

  3. Buck, D.G., Evers, D.C., Adams, E., et al., A global-scale assessment of fish mercury concentrations and the identification of biological hotspots, Sci. Total Environ., 2019, no. 687, p. 956. https://doi.org/10.1016/j.scitotenv.2019.06.159

  4. Clarkson, T.W. and Magos, L., The toxicology of mercury and its chemical compounds, Crit. Rev. Toxicol., 2006, vol. 36, p. 609. https://doi.org/10.1080/10408440600845619

    Article  CAS  PubMed  Google Scholar 

  5. Collen, P. and Gibson, R.J., The general ecology of beavers (Castor spp.), as related to their influence on stream ecosystems and riparian habitats, and subsequent effects on fish—a review, Rev. Fish Biol. Fish., 2000, vol. 10, p. 439. https://doi.org/10.1023/A:1012262217012

    Article  Google Scholar 

  6. Culler, L.E., Shin-ya, O., and Crumrine, P., Predator–prey interactions of dytiscids (chapter 8), in Ecology, Systematics, and the Natural History of Predaceous Diving Beetles (Coleoptera: Dytiscidae), Dordrecht: Springer, 2014, p. 363.

    Google Scholar 

  7. Depew, D.C., Burgess, N.M., Anderson, M.R., et al., An overview of mercury concentrations in freshwater fish species: a national fish mercury dataset for Canada, Can. J. Fish. Aquat. Sci., 2013, no. 70, p. 436. https://doi.org/10.1139/cjfas-2012-0338

  8. Driscoll, C.T., Mason, R.P., Chan, H.M., et al., Mercury as a global pollutant: sources, pathways, and effects, Environ. Sci. Technol., 2013, vol. 47, p. 4967. https://doi.org/10.1021/es305071v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dyadichko, V.G., Vodnye zhuki podotryada Adephaga (Coleoptera) Polistovo-Lovatskoj bolotnoj sistemy: vidovoj sostav, biotopicheskoe raspredelenie, osobennosti biologii (Aquatic beetles of the suborder Adephaga (Coleoptera) of the Polistovo-Lovatskaya swamp system: species composition, biotopic distribution, features of biology), Tr. Gos. Prir. Zapov."Rdeiskii," Velikii Novgorod: Tipografiya Vikont, 2013, no. 2, p. 69.

  10. Greenfield, B.K., Hrabik, T.R., Harvey, C.J., and Carpenter, S.R., Predicting mercury levels in yellow perch: use of water chemistry, trophic ecology, and spatial traits, Can. J. Fish. Aquat. Sci., 2001,vol. 58, no. 7, p. 1419. https://doi.org/10.1139/f01-088

    Article  CAS  Google Scholar 

  11. Haynes, K.M., Kane, E.S., Potvin, L., et al., Mobility and transport of mercury and methylmercury in peat as a function of changes in water table regime and plant functional groups, Global Biogeochem. Cycles, 2017, vol. 31, no. 2, p. 233.

    CAS  Google Scholar 

  12. Kamshilova, T.B., Komov, V.T., and Gremyachikh, V.A., Accumulation of mercury in muscles and growth rate of perch (Perca fluviatilis) from the lakes of the Polistovo-Lovatsky raised bog massif, Voda: Khim. Ekol., 2013, no. 12, p. 58.

  13. Komov, V.T., Gremyachikh, V.A., Udodenko, Yu.G., et al., Mercury in abiotic and biotic components of aquatic and terrestrial ecosystems of an urban-type settlement on the bank of the Rybinsk Reservoir, Tr. Inst. Biol. Vnutr. Vod Ross. Akad. Nauk, 2017, no. 77 (80), p. 34.

  14. Lobus, N.V. and Komov, V.T., Mercury in the muscle tissue of fish in the Central and South Vietnam, Inland Water Biol., 2016, vol. 9, no. 3, pp. 319–328. https://doi.org/10.1134/S1995082916030159

    Article  Google Scholar 

  15. Nemova, N.N., Biokhimicheskie effekty nakopleniya rtuti v rybe (Biochemical Effects of Mercury Accumulation in Fish), Moscow: Nauka, 2004.

  16. Painter, K.J., Westbrook, C.J., Hall, B.D., et al., Effects of in channel beaver impoundments on mercury bioaccumulation in Rocky Mountain stream food webs, Ecosphere, 2015, vol. 6, no. 10, p. 1. https://doi.org/10.1890/ES15-00167.1

    Article  Google Scholar 

  17. Pennuto, C.M. and Smith, M., From midges to spiders: mercury biotransport in riparian zones near the Buffalo River Area of Concern (AOC), USA, Bull. Environ. Contam. Toxicol., 2015, vol. 95, no. 6, p. 701. https://doi.org/10.1007/s00128-015-1658-6

    Article  CAS  PubMed  Google Scholar 

  18. Petrov, P.N., Vodnye zhestkokrylye podotryada Adephaga (Coleoptera) Urala i Zapadnoj Sibiri (Aquatic beetles of the suborder Adephaga (Coleoptera) of the Urals and Western Siberia), Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow, 2004.

  19. Razavi, N.R., Cushman, S.F., and Halfman, J.D., Mercury bioaccumulation in stream food webs of the Finger Lakes in central New York State, USA, Ecotoxicol. Environ. Saf., 2019, no. 172, p. 265. https://doi.org/10.1016/j.ecoenv.2019.01.060

  20. Rodenhouse, N.L., Lowe, W.H., and Gebauer, R.L., Mercury bioaccumulation in temperate forest food webs associated with headwater streams, Sci. Total Environ., 2019, vol. 665, p. 1125. https://doi.org/10.1016/j.scitotenv.2019.02.151

    Article  CAS  PubMed  Google Scholar 

  21. Roy, V., Amyot, M., and Carignan, R., Beaver ponds increase methylmercury concentrations in canadian shield streams along vegetation and pond-age gradients, Environ. Sci. Technol., 2009, vol. 43, no. 15, p. 5605. https://doi.org/10.1021/es901193x

    Article  CAS  PubMed  Google Scholar 

  22. Sazhnev, A.S. and Zav’yalov, N.A., Fauna and ecology of aquatic coleopteran beaver ponds of the Rdeiskii Reserve, in Bobry v zapovednikakh evropeiskoi chasti Rossii (Beavers in the Reserves of the European Part of Russia), Tr. Gos. Prir. Zapov. “Rdeiskii,” 2018, vol. 4, p. 423.

  23. Scheuhammer, A., Braune, B., Chan, H.M., et al., Recent progress on our understanding of the biological effects of mercury in fish and wildlife in the Canadian Arctic, Sci. Total Environ., 2015, vols. 509–510, p. 91. https://doi.org/10.1016/j.scitotenv.2014.05.142

    Article  CAS  PubMed  Google Scholar 

  24. Selin, N.E., Global biogeochemical cycling of mercury: a review, Ann. Rev. Environ. Res., 2009, no. 34, p. 43. https://doi.org/10.1146/annurev.environ.051308.084314

  25. Udodenko, Yu.G., Seleznev, D.G., Prokin, A.A., et al., Mercury accumulation in adults of two large species of diving beetles (Coleoptera: Dytiscidae), Russ. Entomol. J., 2019, vol. 28, no. 1, p. 23. https://doi.org/10.15298/rusentj.28.1.04

    Article  Google Scholar 

  26. UN Environment, Global Mercury Assessment 2018, UN Environment Programme, Chemicals and Health Branch Geneva, Switzerland, 2019.

    Google Scholar 

  27. Wiener, J.G., Krabbenhoft, D.P., Heinz, G.H., and Scheuhammer, A.M., Ecotoxicology of mercury, in Handbook of Ecotoxicology, FL, Boca Raton: CRC Press, 2002, p. 409.

    Google Scholar 

  28. Wu, P., Kainz, M., Akerblom, S., et al., Terrestrial diet influences mercury bioaccumulation in zooplankton and macroinvertebrates in lakes with differing dissolved organic carbon concentrations, Sci. Total Environ., 2019, vol. 669, p. 821. https://doi.org/10.1016/j.scitotenv.2019.03.171

    Article  CAS  PubMed  Google Scholar 

  29. Zav’yalov, N.A., Sredoobrazuyushchaya deyatel’nost' bobra (Castor fiber L.) v evropeiskoi chasti Rossii (Environment-Forming Activity of the Beaver (Castor Fiber L.) In the European Part of Russia), Tr. Gos. prirod. zapoved. “Rdeiskii,” Velikii Novgorod: Tipografiya Vikont, 2015, no. 3.

  30. Zheng, D.-M., Wang, Q.-C., Zhang, Z.-S., et al., Bioaccumulation of total and methyl mercury by arthropods, Bull. Environ. Contam. Toxicol., 2008, no. 81, p. 95. https://doi.org/10.1007/s00128-008-9393-x

Download references

ACKNOWLEDGMENTS

We thank N.A. Zav’yalov (Rdeisky State Nature Reserve, town of Kholm, Novgorod oblast) for assistance in carrying out the field works and collecting the material.

Funding

This study was performed within the framework of a state assignment (project no. AAAA-A18-118012690123-4 and AAAA-A18-118012690105-0 and supported by the Russian Foundation for Basic Research within the framework of scientific project no. 18-34-00569.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Udodenko.

Additional information

Translated by D. Zabolotny

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udodenko, Y.G., Prokin, A.A., Seleznev, D.G. et al. Mercury Content in Water Beetles (Coleoptera: Dytiscidae, Hydrophilidae) of Different Size Classes. Inland Water Biol 13, 684–690 (2020). https://doi.org/10.1134/S1995082920040124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082920040124

Keywords:

Navigation