Skip to main content
Log in

Eigenvalues of the MOTS stability operator for slowly rotating Kerr black holes

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study the eigenvalues of the MOTS stability operator for the Kerr black hole with angular momentum per unit mass \(|a| \ll M\). We prove that each eigenvalue depends analytically on a (in a neighbourhood of \(a=0\)), and compute its first nonvanishing derivative. Recalling that \(a=0\) corresponds to the Schwarzschild solution, where each eigenvalue has multiplicity \(2\ell +1\), we find that this degeneracy is completely broken for nonzero a. In particular, for \(0 < |a| \ll M\) we obtain a cluster consisting of \(\ell \) distinct complex conjugate pairs and one real eigenvalue. As a special case of our results, we get a simple formula for the variation of the principal eigenvalue. For perturbations that preserve the total area or mass of the black hole, we find that the principal eigenvalue has a local maximum at \(a=0\). However, there are other perturbations for which the principal eigenvalue has a local minimum at \(a=0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson, L., Mars, M., Metzger, J., Simon, W.: The time evolution of marginally trapped surfaces. Class. Quant. Gravit. 26, 085018 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  2. Andersson, L., Mars, M., Simon, W.: Local existence of dynamical and trapping horizons. Phys. Rev. Lett. 95, 111102 (2005)

    Article  ADS  Google Scholar 

  3. Andersson, L., Mars, M., Simon, W.: Stability of marginally outer trapped surfaces and existence of marginally outer trapped tubes. Adv. Theor. Math. Phys. 12(4), 853–888 (2008)

    Article  MathSciNet  Google Scholar 

  4. Baumgärtel, H.: Analytic Perturbation Theory for Matrices and Operators, Operator Theory: Advances and Applications, vol. 15. Birkhäuser Verlag, Basel (1985)

    MATH  Google Scholar 

  5. Booth, I., Fairhurst, S.: Isolated, slowly evolving, and dynamical trapping horizons: geometry and mechanics from surface deformations. Phys. Rev. D 75, 084019 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  6. Booth, I., Kunduri, H.K., O’Grady, A.: Unstable marginally outer trapped surfaces in static spherically symmetric spacetimes. Phys. Rev. D 96(2), 024059 (2017). 11

    Article  ADS  MathSciNet  Google Scholar 

  7. Bussey, Liam: Investigation of the stability of marginally outer trapped surfaces in Kerr spacetime, B.Sc. Honours thesis, Memorial University (2020)

  8. Chrusciel, P.T., Costa, J.L., Heusler, M.: Stationary black holes: uniqueness and beyond. Living Rev. Relativ. 15, 7 (2012)

    Article  ADS  Google Scholar 

  9. Csukás, Károly Z.: On the stability of codimension-two surfaces in general relativity, M.Sc. thesis, Eötvös Loránd University (2015)

  10. Dong, S.-H., Lemus, R.: The overlap integral of three associated Legendre polynomials. Appl. Math. Lett. 15(5), 541–546 (2002)

    Article  MathSciNet  Google Scholar 

  11. Galloway, Gregory J.: Constraints on the topology of higher dimensional black holes. In: Horowitz, G.T. (ed.) Black Holes in Higher Dimensions, pp. 159–179 (2012)

  12. Hichami, H.: MOTS stability operator: perturbations around spherical symmetry, MSc. thesis, Université de Bourgogne (2018)

  13. Jaramillo, J.L.: A Young-Laplace law for black hole horizons. Phys. Rev. D 89(2), 021502 (2014)

    Article  ADS  Google Scholar 

  14. Jaramillo, J.L.: Black hole horizons and quantum charged particles. Class. Quantum Gravit. 32(13), 132001 (2015). 9

    Article  ADS  MathSciNet  Google Scholar 

  15. Jaramillo, J.L.: A perspective on black hole horizons from the quantum charged particle. J. Phys.: Conf. Ser. 600, 012037 (2015)

    Google Scholar 

  16. Kato, T.: Perturbation Theory for Linear Operators, 2nd edn. Springer-Verlag, Berlin (1976). Grundlehren der Mathematischen Wissenschaften, Band 132

    MATH  Google Scholar 

  17. Kunduri, H.K.: Spectrum of the MOTS stability operator for self-dual rotating black holes. Phys. Lett. B 797(134903), 4 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Mars, M.: Stability of MOTS in totally geodesic null horizons. Class. Quant. Grav. 29, 145019 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  19. Messiah, A.: Quantum mechanics. Vol. II, Translated from the French by J. Potter, North-Holland Publishing Co., Amsterdam; Interscience Publishers, a division of Wiley, New York (1962)

  20. Pook-Kolb, D., Birnholtz, O., Jaramillo, J.L., Krishnan, B., Schnetter, E.: Horizons in a binary black hole merger I: geometry and area increase (2020). arXiv:2006.03939

  21. Pook-Kolb, D., Birnholtz, O., Jaramillo, J.L., Krishnan, B., Schnetter, E.: Horizons in a binary black hole merger II: fluxes, multipole moments and stability (2020). arXiv:2006.03940

  22. Pook-Kolb, D., Birnholtz, O., Krishnan, B., Schnetter, E.: Existence and stability of marginally trapped surfaces in black-hole spacetimes. Phys. Rev. D 99, 064005 (2019)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank José Luis Jaramillo for helpful comments and discussions on this problem. G.C. and H.K. acknowledge the support of NSERC grants RGPIN-2017-04259 and RGPIN-2018-04887, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Kunduri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Wigner 3-j symbols

Appendix A: Wigner 3-j symbols

Here we review some properties of the Wigner 3-j symbols (as used above in the proof of Theorem 1.2), following the presentation of [19, Appendix C]. It is well known that the integral of three Legendre polynomials can be written in terms of Wigner 3-j symbols as

$$\begin{aligned} \int _{-1}^1 P_{\ell _1}(z) P_{\ell _2}(z) P_{\ell _3}(z)\,dz = 2 \begin{pmatrix} \ell _1 &{} \ell _2 &{} \ell _3 \\ 0 &{} 0 &{} 0 \end{pmatrix}^2. \end{aligned}$$
(32)

In general the 3-j symbols are difficult to compute explicitly, but the following special case

$$\begin{aligned} \begin{pmatrix} 2 &{} \ell &{} \ell \\ 0 &{} 0 &{} 0 \end{pmatrix} = (-1)^{\ell +1} \sqrt{\frac{\ell (\ell +1)}{(2\ell +3)(2\ell +1)(2\ell -1)}} \end{aligned}$$
(33)

is easily obtained from [19, Eq. (C.23b)], so we have

$$\begin{aligned} \int _{-1}^1 P_2(z) P_\ell (z)^2\,dz = \frac{2\ell (\ell + 1)}{(2\ell +3)(2\ell +1)(2\ell -1)}. \end{aligned}$$
(34)

More general (and complicated) formulas exist for integrals of associated Legendre polynomials. For \(m_3 = m_1 + m_2\) we have

$$\begin{aligned} \begin{aligned} \int _{-1}^1 P_{\ell _1}^{m_1}(z) P_{\ell _2}^{m_2}(z) P_{\ell _3}^{m_3}(z)\,dz&= 2 (-1)^{m_3} \sqrt{ \frac{(\ell _1 + m_1)!(\ell _2 + m_2)!(\ell _3 + m_3)!}{(\ell _1 - m_1)!(\ell _2 - m_2)!(\ell _3 - m_3)!}} \\&\quad \times \begin{pmatrix} \ell _1 &{} \ell _2 &{} \ell _3 \\ 0 &{} 0 &{} 0 \end{pmatrix} \begin{pmatrix} \ell _1 &{} \ell _2 &{} \ell _3 \\ m_1 &{} m_2 &{} -m_3 \end{pmatrix}, \end{aligned} \end{aligned}$$
(35)

see [10, eq. (30)]. Choosing \(m_1 = m_2 = m_3 = 0\), we get (32) as a special case. The other case we need is \(\ell _1 = \ell _2 = \ell \), \(\ell _3 = 2\), \(m_1 = m_2 = 1\) and \(m_3 = 2\). Using

$$\begin{aligned} \begin{pmatrix} \ell &{} \ell &{} 2 \\ 1 &{} 1 &{} -2 \end{pmatrix} = (-1)^{\ell +1} \sqrt{\frac{3}{2}} \sqrt{\frac{\ell (\ell +1)}{(2\ell +3)(2\ell +1)(2\ell -1)}} \end{aligned}$$
(36)

together with (33), we find that

$$\begin{aligned} \int _{-1}^1 P_2^2(z) P_{\ell }^1(z)^2 \,dz = \frac{12 \ell ^2(\ell +1)^2}{(2\ell +3)(2\ell +1)(2\ell -1)}. \end{aligned}$$
(37)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bussey, L., Cox, G. & Kunduri, H. Eigenvalues of the MOTS stability operator for slowly rotating Kerr black holes. Gen Relativ Gravit 53, 16 (2021). https://doi.org/10.1007/s10714-021-02786-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-021-02786-3

Keywords

Navigation