Skip to main content
Log in

Valuation of banana peel waste for producing activated carbon via NaOH and pyrolysis for methylene blue removal

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

The discharge of dye-containing industrial effluents such as methylene blue (MB) in water bodies has resulted in severe aquatic and human life problems. In addition to this factor, there is the accumulation of banana peel wastes, which can generate ecological damage. Thus, this research purpose a different method from the literature using the banana peel waste (BP) to produce activated carbon (ACBP) by NaOH activation followed by pyrolysis at 400 °C to remove methylene blue (MB). The material was characterized by TGA, XRD, SEM, BET, and FTIR. The influence of dye concentration (10, 25, 50, 100, 250, and 500 mg L−1) was investigated. ACBP presented a well-developed pore structure with a predominance of mesopores and macropores. This morphological structure directly influences the MB removal capacity. The highest efficiency for dye removal was in the MB initial concentration of 25 mg L−1, sorbent of 0.03 g, and contact time of 60 min, which were 99.8%. The adsorption isotherms were well defined by Langmuir, Freundlich, and Temkin isotherm models. The Langmuir model represented the best fit of experimental data for ACBP with a maximum adsorption capacity of 232.5 mg g−1. This adsorbent showed a comparatively high performance to some previous works. So, the banana peel waste is an efficient resource for producing activated carbon and the adsorption of methylene blue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gautam RK, Mudhoo A, Lofrano G, Chattopadhyaya MC (2014) Biomass–derived biosorbents for metal ions sequestration: adsorbent modification and activation methods and adsorbent regeneration. J Environ Chem Eng 2:239–259. https://doi.org/10.1016/j.jece.2013.12.019

    Article  CAS  Google Scholar 

  2. Mpatani FM, Aryee AA, Kani AN, Wen K, Dovi E, Qu L, Li Z, Han R (2020) Removal of methylene blue from aqueous medium by citrate modified bagasse: kinetic, equilibrium and thermodynamic study. Bioresour Technol Rep 11:100463. https://doi.org/10.1016/j.biteb.2020.100463

    Article  Google Scholar 

  3. Somsesta N, Sricharoenchaikul V, Aht-Ong D (2020) Adsorption removal of methylene blue onto activated carbon/cellulose biocomposite films: equilibrium and kinetic studies. Mater Chem Phys 240:122221. https://doi.org/10.1016/j.matchemphys.2019.122221

    Article  CAS  Google Scholar 

  4. Calimli MH, Nas MS, Burhan H, Mustafov SD, Demirbas Ö, Sen F (2020) Preparation, characterization and adsorption kinetics of methylene blue dye in reduced-graphene oxide supported nanoadsorbents. J Mol Liq 309:113171. https://doi.org/10.1016/j.molliq.2020.113171

    Article  CAS  Google Scholar 

  5. Wang G, Chen Y, Xu G, Pei Y (2019) Effective removing of methylene blue from aqueous solution by tannins immobilized on cellulose microfibers. Int J Biol Macromol 129:198–206. https://doi.org/10.1016/j.ijbiomac.2019.02.039

    Article  CAS  Google Scholar 

  6. Danish M, Ahmad T, Majeed S, Ahmad M, Ziyang L, Pin Z, Shakeel Iqubal SM (2018) Use of banana trunk waste as activated carbon in scavenging methylene blue dye: Kinetic, thermodynamic, and isotherm studies. Bioresour Technol Rep 3:127–137. https://doi.org/10.1016/j.biteb.2018.07.007

    Article  Google Scholar 

  7. Annadurai G, Juang R, Lee D (2002) Use of cellulose–based wastes for adsorption of dyes from aqueous solution. J Hazard Mater 92:263–274. https://doi.org/10.1016/S0304-3894(02)00017-1

    Article  CAS  Google Scholar 

  8. Sahu S, Pahi S, Sahu JK, Sahu UK, Patel RK (2020) Kendu (Diospyros melanoxylon Roxb) fruit peel activated carbon—an efficient bioadsorbent for methylene blue dye: equilibrium, kinetic, and thermodynamic study. Environ Sci Pollut Res 27:22579–22592. https://doi.org/10.1007/s11356-020-08561-2

    Article  CAS  Google Scholar 

  9. Salimi A, Roosta A (2019) Experimental solubility and thermodynamic aspects of methylene blue in different solvents. Thermochim Acta 675:134–139. https://doi.org/10.1016/j.tca.2019.03.024

    Article  CAS  Google Scholar 

  10. Jawad AH, Rashid RA, Ishak MAM, Ismail K (2018) Adsorptive removal of methylene blue by chemically treated cellulosic waste banana (Musa sapientum) peels. J Taibah Univ Sci 12:809–819. https://doi.org/10.1080/16583655.2018.1519893

    Article  Google Scholar 

  11. Enniya I, Rghioui L, Jourani A (2018) Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels. Sustain Chem Pharm 7:9–16. https://doi.org/10.1016/j.scp.2017.11.003

    Article  Google Scholar 

  12. Meili L, Lins PVS, Costa MT, Almeida RL, Abud AKS, Soletti JI, Dotto GL, Tanabe EH, Sellaoui L, Carvalho SHV, Erto A (2019) Adsorption of methylene blue on agroindustrial wastes: experimental investigation and phenomenological modelling. Prog Biophys Mol Biol 141:60–71. https://doi.org/10.1016/j.pbiomolbio.2018.07.011

    Article  CAS  Google Scholar 

  13. Akpomie KG, Conradie J (2020) Banana peel as a biosorbent for the decontamination of water pollutants. A review. Environ Chem Lett 18:1085–1112. https://doi.org/10.1007/s10311-020-00995-x

    Article  CAS  Google Scholar 

  14. Costa Junior IL, Finger L, Quitaiski PP, Neitzke SM, Besen JV, Correa MK, Mees JBR (2018) Biosorption of 5G blue reactive dye using waste rice husk. Eclética Química J 43:45. https://doi.org/10.26850/1678-4618eqj.v43.3.2018.p45-58

    Article  Google Scholar 

  15. Wu W, Zhang X, Yang J, Li J, Li X (2020) Facile preparation of oxygen-rich activated carbon from petroleum coke for enhancing methylene blue adsorption. Carbon Lett 30:627–636. https://doi.org/10.1007/s42823-020-00134-0

    Article  Google Scholar 

  16. Yan Q, Li J, Cai Z (2020) Preparation and characterization of chars and activated carbons from wood wastes. Carbon Lett. https://doi.org/10.1007/s42823-020-00205-2

    Article  Google Scholar 

  17. Maia LS, da Silva AIC, Carneiro ES, Monticelli FM, Pinhati FR, Mulinari DR (2020) Activated carbon from palm fibres used as an adsorbent for methylene blue removal. J Polym Environ. https://doi.org/10.1007/s10924-020-01951-0

    Article  Google Scholar 

  18. Nakhli A, Bergaoui M, Toumi KH, Khalfaoui M, Benguerba Y, Balsamo M, Soetaredjo FE, Ismadji S, Ernst B, Erto A (2020) Molecular insights through computational modeling of methylene blue adsorption onto low-cost adsorbents derived from natural materials: a multi-model’s approach. Comput Chem Eng 140:106965. https://doi.org/10.1016/j.compchemeng.2020.106965

    Article  CAS  Google Scholar 

  19. Mullick A, Neogi S (2016) Synthesis of potential biosorbent from used stevia leaves and its application for malachite green removal from aqueous solution: kinetics, isotherm and regeneration studies. RSC Adv 6:65960–65975. https://doi.org/10.1039/c6ra15225b

    Article  CAS  Google Scholar 

  20. Keerthanan S, Bhatnagar A, Mahatantila K, Jayasinghe C, Ok YS, Vithanage M (2020) Engineered tea-waste biochar for the removal of caffeine, a model compound in pharmaceuticals and personal care products (PPCPs), from aqueous media. Environ Technol Innov 19:100847. https://doi.org/10.1016/j.eti.2020.100847

    Article  Google Scholar 

  21. Astuti W, Sulistyaningsih T, Kusumastuti E, Yanny G, Sari R (2019) Bioresource technology thermal conversion of pineapple crown leaf waste to magnetized activated carbon for dye removal. Bioresour Technol 287:121426. https://doi.org/10.1016/j.biortech.2019.121426

    Article  CAS  Google Scholar 

  22. Menya E, Olupot PW, Storz H, Lubwama M, Kiros Y (2018) Production and performance of activated carbon from rice husks for removal of natural organic matter from water: a review. Chem Eng Res Des 129:271–296. https://doi.org/10.1016/j.cherd.2017.11.008

    Article  CAS  Google Scholar 

  23. Fu K, Yue Q, Gao B, Wang Y, Li Q (2017) Activated carbon from tomato stem by chemical activation with FeCl2. Colloids Surf A Physicochem Eng Asp 529:842–849. https://doi.org/10.1016/j.colsurfa.2017.06.064

    Article  CAS  Google Scholar 

  24. Yu Q, Zhao H, Zhao H, Sun S, Ji X, Li M, Wang Y (2019) Preparation of tobacco-stem activated carbon from using response surface methodology and its application for water vapor adsorption in solar drying system. Sol Energy 177:324–336. https://doi.org/10.1016/j.solener.2018.11.029

    Article  CAS  Google Scholar 

  25. Dassharma D, Samanta S, S DNK, Halder G (2020) A mechanistic insight into enrofloxacin sorptive affinity of chemically activated carbon engineered from green coconut shell. J Environ Chem Eng 8:104140. https://doi.org/10.1016/j.jece.2020.104140

    Article  CAS  Google Scholar 

  26. El-Shafey EI, Ali SNF, Al-Busafi S, Al-Lawati HAJ (2016) Preparation and characterization of surface functionalized activated carbons from date palm leaflets and application for methylene blue removal. J Environ Chem Eng 4:2713–2724. https://doi.org/10.1016/j.jece.2016.05.015

    Article  CAS  Google Scholar 

  27. Han Q, Wang J, Goodman BA, Xie J, Liu Z (2020) High adsorption of methylene blue by activated carbon prepared from phosphoric acid treated eucalyptus residue. Powder Technol 366:239–248. https://doi.org/10.1016/j.powtec.2020.02.013

    Article  CAS  Google Scholar 

  28. Sari SN, Melati A (2019) Facile preparation of carbon nanofiber from banana peel waste. Mater Today Proc 13:165–168. https://doi.org/10.1016/j.matpr.2019.03.208

    Article  CAS  Google Scholar 

  29. Yan Y, Wei Y, Li Q, Shi M, Zhao C, Chen L, Fan C, Yang R, Xu Y (2018) Activated porous carbon materials with ultrahigh specific surface area derived from banana peels for high-performance lithium–sulfur batteries. J Mater Sci Mater Electron 29:11325–11335. https://doi.org/10.1007/s10854-018-9220-z

    Article  CAS  Google Scholar 

  30. Stavrinou A, Aggelopoulos CA, Tsakiroglou CD (2018) Exploring the adsorption mechanisms of cationic and anionic dyes onto agricultural waste peels of banana, cucumber and potato: adsorption kinetics and equilibrium isotherms as a tool. J Environ Chem Eng 6:6958–6970. https://doi.org/10.1016/j.jece.2018.10.063

    Article  CAS  Google Scholar 

  31. Zhang P, O’Connor D, Wang Y, Jiang L, Xia T, Wang L, Tsang DCW, Ok YS, Hou D (2020) A green biochar/iron oxide composite for methylene blue removal. J Hazard Mater 384:121286. https://doi.org/10.1016/j.jhazmat.2019.121286

    Article  CAS  Google Scholar 

  32. Fabre E, Lopes CB, Vale C, Pereira E, Silva CM (2020) Valuation of banana peels as an effective biosorbent for mercury removal under low environmental concentrations. Sci Total Environ 709:135883. https://doi.org/10.1016/j.scitotenv.2019.135883

    Article  CAS  Google Scholar 

  33. Yu D, Wang L, Wu M (2018) Simultaneous removal of dye and heavy metal by banana peels derived hierarchically porous carbons. J Taiwan Inst Chem Eng 93:543–553. https://doi.org/10.1016/j.jtice.2018.08.038

    Article  CAS  Google Scholar 

  34. Food and Agriculture Organization of the United Nations., FAOSTAT (2018) http://www.fao.org/faostat/en/#home. Accessed 25 June 2020

  35. Instituto Brasileiro de Geografia e Estatítica., IBGE | Portal do IBGE | IBGE, Produção Agrícola Munic (2018) https://www.ibge.gov.br/. Accessed 25 June 2020

  36. Yusuf I, Flagiello F, Ward NI, Arellano-García H, Avignone-Rossa C, Felipe-Sotelo M (2020) Valorisation of banana peels by hydrothermal carbonisation: potential use of the hydrochar and liquid by-product for water purification and energy conversion. Bioresour Technol Rep 12:100582. https://doi.org/10.1016/j.biteb.2020.100582

    Article  Google Scholar 

  37. Bao Z, Lu W (2020) Developing efficient circularity for construction and demolition waste management in fast emerging economies: lessons learned from Shenzhen, China. Sci Total Environ 724:138264. https://doi.org/10.1016/j.scitotenv.2020.138264

    Article  CAS  Google Scholar 

  38. Rathore P, Sarmah SP (2020) Economic, environmental and social optimization of solid waste management in the context of circular economy. Comput Ind Eng 145:106510. https://doi.org/10.1016/j.cie.2020.106510

    Article  Google Scholar 

  39. Rovani S, Rodrigues AG, Medeiros LF, Cataluña R, Lima ÉC, Fernandes AN (2016) Synthesis and characterisation of activated carbon from agroindustrial waste—preliminary study of 17β-estradiol removal from aqueous solution. J Environ Chem Eng 4:2128–2137. https://doi.org/10.1016/j.jece.2016.03.030

    Article  CAS  Google Scholar 

  40. Krishnamoorthy R, Govindan B, Banat F, Sagadevan V, Purushothaman M, Show PL (2019) Date pits activated carbon for divalent lead ions removal. J Biosci Bioeng 128:88–97. https://doi.org/10.1016/j.jbiosc.2018.12.011

    Article  CAS  Google Scholar 

  41. Sun K, Huang Q, Chi Y, Yan J (2018) Effect of ZnCl2-activated biochar on catalytic pyrolysis of mixed waste plastics for producing aromatic-enriched oil. Waste Manag 81:128–137. https://doi.org/10.1016/j.wasman.2018.09.054

    Article  CAS  Google Scholar 

  42. Negara DNKP, Nindhia TGT, Surata IW, Hidajat F, Sucipta M (2020) Textural characteristics of activated carbons derived from tabah bamboo manufactured by using H3PO4 chemical activation. Mater Today Proc 22:148–155. https://doi.org/10.1016/j.matpr.2019.08.030

    Article  CAS  Google Scholar 

  43. Kiani D, Baltrusaitis J (2020) Immobilization and activation of cobalt-amine catalyst on NH 4 OH-treated activated carbon for ethylene dimerization. Catal Today. https://doi.org/10.1016/j.cattod.2020.04.062

    Article  Google Scholar 

  44. Liu J, Yang X, Liu H, Cheng W, Bao Y (2020) Modification of calcium-rich biochar by loading Si/Mn binary oxide after NaOH activation and its adsorption mechanisms for removal of Cu(II) from aqueous solution. Colloids Surf A Physicochem Eng Asp 601:124960. https://doi.org/10.1016/j.colsurfa.2020.124960

    Article  CAS  Google Scholar 

  45. Beltrame KK, Cazetta AL, de Souza PSC, Spessato L, Silva TL, Almeida VC (2018) Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves. Ecotoxicol Environ Saf 147:64–71. https://doi.org/10.1016/j.ecoenv.2017.08.034

    Article  CAS  Google Scholar 

  46. Li Y, Liu J, Yuan Q, Tang H, Yu F, Lv X (2016) A green adsorbent derived from banana peel for highly effective removal of heavy metal ions from water. RSC Adv 6:45041–45048. https://doi.org/10.1039/c6ra07460j

    Article  CAS  Google Scholar 

  47. Kim DW, Wee JH, Yang CM, Yang KS (2020) Efficient removals of Hg and Cd in aqueous solution through NaOH-modified activated carbon fiber. Chem Eng J 392:123768. https://doi.org/10.1016/j.cej.2019.123768

    Article  CAS  Google Scholar 

  48. Zhang Y, Song X, Xu Y, Shen H, Kong X, Xu H (2019) Utilization of wheat bran for producing activated carbon with high specific surface area via NaOH activation using industrial furnace. J Clean Prod 210:366–375. https://doi.org/10.1016/j.jclepro.2018.11.041

    Article  CAS  Google Scholar 

  49. Islam MA, Ahmed MJ, Khanday WA, Asif M, Hameed BH (2017) Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydrochar for methylene blue removal. Ecotoxicol Environ Saf 138:279–285. https://doi.org/10.1016/j.ecoenv.2017.01.010

    Article  CAS  Google Scholar 

  50. Erdoǧan S, Önal Y, Akmil-Başar C, Bilmez-Erdemoǧlu S, Sarici-Özdemir Ç, Köseoǧlu E, IçDuygu G (2005) Optimization of nickel adsorption from aqueous solution by using activated carbon prepared from waste apricot by chemical activation. Appl Surf Sci 252:1324–1331. https://doi.org/10.1016/j.apsusc.2005.02.089

    Article  CAS  Google Scholar 

  51. Bakhta S, Sadaoui Z, Lassi U, Romar H, Kupila R, Vieillard J (2020) Performances of metals modified activated carbons for fluoride removal from aqueous solutions. Chem Phys Lett 754:137705. https://doi.org/10.1016/j.cplett.2020.137705

    Article  CAS  Google Scholar 

  52. Habeeb OA, Kanthasamy R, Saber SEM, Olalere OA (2020) Characterization of agriculture wastes based activated carbon for removal of hydrogen sulfide from petroleum refinery waste water. Mater Today Proc 20:588–594. https://doi.org/10.1016/j.matpr.2019.09.194

    Article  CAS  Google Scholar 

  53. Pathak PD, Mandavgane SA (2015) Preparation and characterization of raw and carbon from banana peel by microwave activation: application in citric acid adsorption. J Environ Chem Eng 3:2435–2447. https://doi.org/10.1016/j.jece.2015.08.023

    Article  CAS  Google Scholar 

  54. Da Oh W, Veksha A, Chen X, Adnan R, Lim JW, Leong KH, Lim TT (2019) Catalytically active nitrogen-doped porous carbon derived from biowastes for organics removal via peroxymonosulfate activation. Chem Eng J 374:947–957. https://doi.org/10.1016/j.cej.2019.06.001

    Article  CAS  Google Scholar 

  55. Selvaraju G, Bakar NKA (2017) Production of a new industrially viable green-activated carbon from Artocarpus integer fruit processing waste and evaluation of its chemical, morphological and adsorption properties. J Clean Prod 141:989–999. https://doi.org/10.1016/j.jclepro.2016.09.056

    Article  CAS  Google Scholar 

  56. Fasakin O, Dangbegnon JK, Momodu DY, Madito MJ, Oyedotun KO, Eleruja MA, Manyala N (2018) Synthesis and characterization of porous carbon derived from activated banana peels with hierarchical porosity for improved electrochemical performance. Electrochim Acta 262:187–196. https://doi.org/10.1016/j.electacta.2018.01.028

    Article  CAS  Google Scholar 

  57. Al-Malack MH, Basaleh AA (2016) Adsorption of heavy metals using activated carbon produced from municipal organic solid waste. Desalin Water Treat 57:24519–24531. https://doi.org/10.1080/19443994.2016.1144536

    Article  CAS  Google Scholar 

  58. Oyekanmi AA, Ahmad A, Hossain K, Id MR (2019) Adsorption of Rhodamine B dye from aqueous solution onto acid treated banana peel: response surface methodology, kinetics and isotherm studies. PLoS ONE 14:e0216878. https://doi.org/10.1371/journal.pone.0216878

    Article  CAS  Google Scholar 

  59. Pezoti O, Cazetta AL, Bedin KC, Souza LS, Martins AC, Silva TL, Santos Júnior OO, Visentainer JV, Almeida VC (2016) NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: kinetic, isotherm and thermodynamic studies. Chem Eng J 288:778–788. https://doi.org/10.1016/j.cej.2015.12.042

    Article  CAS  Google Scholar 

  60. Martins AC, Pezoti O, Cazetta AL, Bedin KC, Yamazaki DAS, Bandoch GFG, Asefa T, Visentainer JV, Almeida VC (2015) Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: kinetic and equilibrium studies. Chem Eng J 260:291–299. https://doi.org/10.1016/j.cej.2014.09.017

    Article  CAS  Google Scholar 

  61. Mahamad MN, Zaini MAA, Zakaria ZA (2015) Preparation and characterization of activated carbon from pineapple waste biomass for dye removal. Int Biodeterior Biodegrad 102:274–280. https://doi.org/10.1016/j.ibiod.2015.03.009

    Article  CAS  Google Scholar 

  62. Amel K, Hassen MA, Kerroum D (2012) Isotherm and kinetics study of biosorption of cationic dye onto banana peel. Energy Procedia 19:286–295. https://doi.org/10.1016/j.egypro.2012.05.208

    Article  CAS  Google Scholar 

  63. Pagalan E, Sebron M, Gomez S, Jane S, Ampusta R, Joy A, Joyno C, Ido A, Arazo R (2020) Industrial crops & products activated carbon from spent coffee grounds as an adsorbent for treatment of water contaminated by aniline yellow dye. Ind Crop Prod 145:111953. https://doi.org/10.1016/j.indcrop.2019.111953

    Article  CAS  Google Scholar 

  64. Elamin MR, Abdulkhair BY, Elzupir AO (2019) Insight to aspirin sorption behavior on carbon nanotubes from aqueous solution: thermodynamics, kinetics, influence of functionalization and solution parameters. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-49331-6

    Article  CAS  Google Scholar 

  65. Moubarak F, Atmani R, Maghri I, Elkouali M, Talbi M, Bouamrani ML, Salouhi M, Kenz A (2014) Elimination of methylene blue dye with natural adsorbent « banana peels powder ». Glob J Sci Front Res B Chem 14:38–44. http://journalofscience.org/index.php/GJSFR/article/view/1077

  66. Pathania D, Sharma S, Singh P (2017) Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arab J Chem 10:S1445–S1451. https://doi.org/10.1016/j.arabjc.2013.04.021

    Article  CAS  Google Scholar 

  67. Erkey C (2011) Thermodynamics and dynamics of adsorption of metal complexes on surfaces from supercritical solutions. In: Supercritical fluids and organometallic compounds: from recovery of trace metals to synthesis of nanosructured materials, v 1. Elsevier BV, pp 41–77

  68. El Gamal M, Mousa HA, El-naas MH, Zacharia R, Judd S (2018) Bio-regeneration of activated carbon: a comprehensive review. Sep Purif 197:345–359. https://doi.org/10.1016/j.seppur.2018.01.015

    Article  CAS  Google Scholar 

  69. Ghani ZA, Yusoff MS, Zaman NQ, Zamri MFMA, Andas J (2017) Optimization of preparation conditions for activated carbon from banana pseudo-stem using response surface methodology on removal of color and COD from landfill leachate. Waste Manag 62:177–187. https://doi.org/10.1016/j.wasman.2017.02.026

    Article  CAS  Google Scholar 

  70. De Carvalho HP, Huang J, Zhao M, Liu G, Dong L, Liu X (2015) Improvement of Methylene Blue removal by electrocoagulation/banana peel adsorption coupling in a batch system. Alex Eng J 54:777–786. https://doi.org/10.1016/j.aej.2015.04.003

    Article  Google Scholar 

  71. Lv S, Chunxi L, Jianguo M, Hong M (2020) A functional activated carbon for efficient adsorption of phenol derived from pyrolysis of rice husk, KOH-activation and EDTA-4Na-modification. Appl Surf Sci 510:145425. https://doi.org/10.1016/j.apsusc.2020.145425

  72. Foo KY (2018) Effect of microwave regeneration on the textural network, surface chemistry and adsorptive property of the agricultural waste based activated carbons. Proc Saf Environ Protec 116:461–467. https://doi.org/10.1016/j.psep.2018.01.022

Download references

Acknowledgement

The authors are grateful for the research support by FAPERJ (process E-26/010.001800/2015 and E-26/010.101232/2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniella R. Mulinari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maia, L.S., Duizit, L.D., Pinhatio, F.R. et al. Valuation of banana peel waste for producing activated carbon via NaOH and pyrolysis for methylene blue removal. Carbon Lett. 31, 749–762 (2021). https://doi.org/10.1007/s42823-021-00226-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-021-00226-5

Keywords

Navigation