Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The evolution of niche overlap and competitive differences

Abstract

Competition can result in evolutionary changes to coexistence between competitors but there are no theoretical models that predict how the components of coexistence change during this eco-evolutionary process. Here we study the evolution of the coexistence components, niche overlap and competitive differences, in a two-species eco-evolutionary model based on consumer–resource interactions and quantitative genetic inheritance. Species evolve along a one-dimensional trait axis that allows for changes in both niche position and species intrinsic growth rates. There are three main results. First, the breadth of the environment has a strong effect on the dynamics, with broader environments leading to reduced niche overlap and enhanced coexistence. Second, coexistence often involves a reduction in niche overlap while competitive differences stay relatively constant or vice versa; in general changes in competitive differences maintain coexistence only when niche overlap remains constant. Large simultaneous changes in niche overlap and competitive difference often result in one of the species being excluded. Third, provided that the species evolve to a state where they coexist, the final niche overlap and competitive difference values are independent of the system’s initial state, although they do depend on the model’s parameters. The model suggests that evolution is often a destructive force for coexistence due to evolutionary changes in competitive differences, a finding that expands the paradox of diversity maintenance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Example of the dynamics generated by the model.
Fig. 2: Evolutionary changes to niche overlap and competitive differences.
Fig. 3: Coexistence heat map of the total change in niche overlap and competitive differences.
Fig. 4: Coexistence at eco-evolutionary equilibria, represented in the space spanned by niche overlap ρ and log competitive differences κ1/κ2.
Fig. 5: Examples of how niche overlap and competitive differences may change as a result of selection on the trait values of two competitors.

Similar content being viewed by others

Data availability

Code (including Shiny App) and data to replicate our analyses are available at: https://github.com/aipastore/CoexistenceTheory.

Code availability

Code (including Shiny App) to replicate our analyses are available at: https://github.com/aipastore/CoexistenceTheory.

References

  1. Weber, M. G., Wagner, C. E., Best, R. J., Harmon, L. J. & Matthews, B. Evolution in a community context: on integrating ecological interactions and macroevolution. Trends Ecol. Evol. 32, 291–304 (2017).

    Article  PubMed  Google Scholar 

  2. TerHorst, C. P. et al. Evolution in a community context: trait responses to multiple species interactions. Am. Nat. 191, 368–380 (2018).

    Article  Google Scholar 

  3. Vellend, M. et al. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).

    Article  PubMed  Google Scholar 

  4. Post, D. M. & Palkovacs, E. P. Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play. Philos. Trans. R. Soc. B 364, 1629–1640 (2009).

    Article  Google Scholar 

  5. Hiltunen, T., Hairston, N. G., Hooker, G., Jones, L. E. & Ellner, S. P. A newly discovered role of evolution in previously published consumer–resource dynamics. Ecol. Lett. 17, 915–923 (2014).

    Article  PubMed  Google Scholar 

  6. Vasseur, D.A., Amarasekare, P., Rudolf, V.H.W. & Levine, J.M. Eco-evolutionary dynamics enable coexistence via neighbor-dependent selection. Am. Nat. 178, E96–E109 (2011).

  7. Barabás, G. & D’Andrea, R. The effect of intraspecific variation and heritability on community pattern and robustness. Ecol. Lett. 19, 977–986 (2016).

    Article  PubMed  Google Scholar 

  8. Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

    Article  Google Scholar 

  9. Adler, P. B., HilleRislambers, J. & Levine, J. M. A niche for neutrality. Ecol. Lett. 10, 95–104 (2007).

    Article  PubMed  Google Scholar 

  10. Chesson, P. in Ecological Systems (ed. Leemans, R.) Ch. 13 (Springer, 2013).

  11. Chesson, P. Updates on mechanisms of maintenance of species diversity. J. Ecol. 106, 1773–1794 (2018).

    Article  Google Scholar 

  12. Barabás, G., D’Andrea, R. & Stump, S. M. Chesson’s coexistence theory. Ecol. Monogr. 88, 277–303 (2018).

  13. Germain, R. M., Williams, J. L., Schluter, D. & Angert, A. L. Moving character displacement beyond characters using contemporary coexistence theory. Trends Ecol. Evol. 33, 74–84 (2018).

    Article  PubMed  Google Scholar 

  14. Germain, R. M., Srivastava, D. & Angert, A. L. Evolution of an inferior competitor increases resistance to biological invasion. Nat. Ecol. Evol. 4, 419–425 (2020).

    Article  PubMed  Google Scholar 

  15. Adler, P. B., Ellner, S. P. & Levine, J. M. Coexistence of perennial plants: an embarrassment of niches. Ecol. Lett. 13, 1019–1029 (2010).

    PubMed  Google Scholar 

  16. Bimler, M. D., Stouffer, D. B., Lai, H. R. & Mayfield, M. M. Accurate predictions of coexistence in natural systems require the inclusion of facilitative interactions and environmental dependency. J. Ecol. 106, 1839–1852 (2018).

    Article  Google Scholar 

  17. Wainwright, C. E., HilleRisLambers, J., Lai, H. R., Loy, X. & Mayfield, M. M. Distinct responses of niche and fitness differences to water availability underlie variable coexistence outcomes in semi-arid annual plant communities. J. Ecol. 107, 293–306 (2018).

    Article  Google Scholar 

  18. Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, 2001).

  19. Leibold, M. A. & McPeek, M. A. Coexistence of the niche and neutral perspectives in community ecology. Ecology 87, 1399–1410 (2006).

  20. Song, C., Barabás, G. & Saavedra, S. On the consequences of the interdependence of stabilizing and equalizing mechanisms. Am. Nat. 194, 627–639 (2019).

    Article  PubMed  Google Scholar 

  21. Taper, M. L. & Case, T. J. Quantitative genetic models for the coevolution of character displacement. Ecology 66, 355–371 (1985).

    Article  Google Scholar 

  22. Taper, M. L. & Case, T. J. Models of character displacement and the theoretical robustness of taxon cycles. Evolution 46, 317–333 (1992).

    Article  PubMed  Google Scholar 

  23. Schreiber, S. J., Bürger, R. & Bolnick, D. I. The community effects of phenotypic and genetic variation within a predator population. Ecology 92, 1582–1593 (2011).

    Article  PubMed  Google Scholar 

  24. Lankau, R. A. Rapid evolutionary change and the coexistence of species. Annu. Rev. Ecol. Evol. Syst. 42, 335–354 (2011).

    Article  Google Scholar 

  25. D’Andrea, R. & Ostling, A. Challenges in linking trait patterns to niche differentiation. Oikos 125, 1369–1385 (2016).

    Article  Google Scholar 

  26. Abrams, P. A. The theory of limiting similarity. Annu. Rev. Ecol. Syst. 14, 359–376 (1983).

    Article  Google Scholar 

  27. Stuart, Y. E. & Losos, J. B. Ecological character displacement: glass half full or half empty? Trends Ecol. Evol. 28, 402–408 (2013).

    Article  PubMed  Google Scholar 

  28. Zhao, L., Zhang, Q. G. & Zhang, D. Y. Evolution alters ecological mechanisms of coexistence in experimental microcosms. Funct. Ecol. 30, 1440–1446 (2016).

    Article  Google Scholar 

  29. Hart, S. P., Turcotte, M. M. & Levine, J. M. Effects of rapid evolution on species coexistence. Proc. Natl Acad. Sci. USA 116, 2112–2117 (2019).

    Article  CAS  Google Scholar 

  30. Slatkin, M. Ecological character displacement. Ecology 61, 163–177 (1980).

    Article  Google Scholar 

  31. Rummel, J. D. & Roughgarden, J. D. A theory of faunal buildup for competition communities. Evolution 39, 1009–1033 (1985).

    Article  PubMed  Google Scholar 

  32. MacArthur, R. & Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101, 377–385 (1967).

    Article  Google Scholar 

  33. Abrams, P. A. Alternative models of character displacement and niche shift. I. Adaptive shifts in resource use when there is competition for nutritionally nonsubstitutable resources. Evolution 41, 651–661 (1987).

    Article  PubMed  Google Scholar 

  34. TerHorst, C. P., Miller, T. E. & Powell, E. When can competition for resources lead to ecological equivalence? Evol. Ecol. Res. 12, 843–854 (2010).

    Google Scholar 

  35. May, R. M. Stability in multispecies community models. Math. Biosci. 12, 59–79 (1971).

    Article  Google Scholar 

  36. May, R. M. Will a large complex system be stable? Nature 238, 413–414 (1972).

    Article  CAS  PubMed  Google Scholar 

  37. McPeek, M. A. Limiting similarity? The ecological dynamics of natural selection among resources and consumers caused by both apparent and resource competition. Am. Nat. 193, E92–E115 (2019).

    Article  PubMed  Google Scholar 

  38. Pásztor, L., Barabás, G. & Meszéna, G. Competitive exclusion and evolution: convergence almost never produces ecologically equivalent species. Am. Nat. 195, E112–E117 (2020).

  39. Mayfield, M. M. & Levine, J. M. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13, 377–385 (2010).

    Article  Google Scholar 

  40. Connell, J. H. Diversity and the coevolution of competitors, or the ghost of competition past. Oikos 35, 131–138 (1980).

    Article  Google Scholar 

  41. Vukics, A., Asbóth, J. & Meszéna, G. Speciation in multidimensional evolutionary space. Phys. Rev. E 68, 041903 (2003).

    Article  CAS  Google Scholar 

  42. Dieckmann, U. & Doebeli, M. On the origin of species by sympatric speciation. Nature 400, 354–357 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. May, R. M. Stability and Complexity in Model Ecosystems (Princeton Univ. Press, 1973).

  44. Meszéna, G., Gyllenberg, M., Pásztor, L. & Metz, J. A. J. Competitive exclusion and limiting similarity: a unified theory. theoretical population biology. Theor. Popul. Biol. 69, 68–87 (2006).

    Article  PubMed  Google Scholar 

  45. Godoy, O., Kraft, N. J. B. & Levine, J. M. Phylogenetic relatedness and the determinants of competitive outcomes. Ecol. Lett. 17, 836–844 (2014).

    Article  PubMed  Google Scholar 

  46. Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl Acad. Sci. USA 112, 797–802 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Bono, L. M., Gensel, C. L., Pfennig, D. W. & Burch, C. L. Competition and the origins of novelty: experimental evolution of niche-width expansion in a virus. Biol. Lett. 9, 2012.0616 (2013).

    Article  Google Scholar 

  48. Stuart, Y. E. et al. Rapid evolution of a native species following invasion by a congener. Science 346, 463–466 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Zuppinger-Dingley, D. et al. Selection for niche differentiation in plant communities increases biodiversity effects. Nature 515, 108–111 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Ellis, C. N., Traverse, C. C., Mayo-Smith, L., Buskirk, S. W. & Cooper, V. S. Character displacement and the evolution of niche complementarity in a model biofilm community. Evolution 69, 283–293 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Peterson, M. L., Rice, K. J. & Sexton, J. P. Niche partitioning between close relatives suggests trade-offs between adaptation to local environments and competition. Ecol. Evol. 3, 512–522 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Agnarsson, I., Gotelli, N. J., D., A. & Kuntner, M. Limited role of character displacement in the coexistence of congeneric Anelosimus spiders in a Madagascan montane forest. Ecography 39, 743–753 (2016).

    Article  Google Scholar 

  53. Fišer, C., Luštrik, R., Sarbu, S., Flot, J. F. & Trontelj, P. Morphological evolution of coexisting amphipod species pairs from sulfidic caves suggests competitive interactions and character displacement, but no environmental filtering and convergence. PLoS ONE 10, e0123535 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Miller, T. E., Moran, E. R. & TerHorst, C. P. Rethinking niche evolution: experiments with natural communities of Protozoa in pitcher plants. Am. Nat. 184, 277–283 (2014).

    Article  PubMed  Google Scholar 

  55. Tilman, D. Resource Competition and Community Structure (Princeton Univ. Press, 1982).

  56. Abrams, P. A. The evolution of predator–prey interactions: theory and evidence. Annu. Rev. Ecol. Syst. 31, 79–105 (2000).

    Article  Google Scholar 

  57. Hairston, N. G., Ellner, S. P., Geber, M. A., Yoshida, T. & Fox, J. A. Rapid evolution and the convergence of ecological and evolutionary time. Ecol. Lett. 8, 1114–1127 (2005).

    Article  Google Scholar 

  58. Falster, D. S., Brännström, Å, Westoby, M. & Dieckmann, U. Multitrait successional forest dynamics enable diverse competitive coexistence. Proc. Natl Acad. Sci. USA 114, E2719–E2728 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).

    Article  PubMed  Google Scholar 

  60. Bulmer, M. G. The Mathematical Theory of Quantitative Genetics (Clarendon Press, 1980).

  61. Barton, N. H., Etheridge, A. M. & Véber, A. The infinitesimal model: definition, derivation, and implications. Theor. Popul. Biol. 118, 50–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Turelli, M. Commentary: Fisher’s infinitesimal model: a story for the ages. Theor. Popul. Biol. 118, 46–49 (2017).

    Article  PubMed  Google Scholar 

  63. MacArthur, R. H. Species packing and competitive equilibria for many species. Theor. Popul. Biol. 1, 1–11 (1970).

    Article  CAS  PubMed  Google Scholar 

  64. Chesson, P. MacArthur’s consumer–resource model. Theor. Popul. Biol. 37, 26–38 (1990).

    Article  Google Scholar 

  65. Falconer, D. S. Introduction to Quantitative Genetics (Longman, 1981).

Download references

Acknowledgements

We thank S. Allesina, R. Bertram, B. Inouye, S. Steppan and A. Winn for providing insightful comments on this work. This work was made possible in part by funding awarded to M.M.M. (DP170100837) by the Australian Research Council. G.B. acknowledges funding by the Swedish Research Council (Vetenskapsrådet), grant VR 2017-05245.

Author information

Authors and Affiliations

Authors

Contributions

A.I.P. and G.B. designed the study, carried out analyses and drafted the manuscript. M.D.B. carried out analyses and helped draft the manuscript. M.M.M. contributed to the interpretation of analyses and critically revised the manuscript. T.E.M. contributed to the design of the study and critically revised the manuscript.

Corresponding author

Correspondence to Abigail I. Pastore.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Ecology & Evolution thanks J. Sakarchi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastore, A.I., Barabás, G., Bimler, M.D. et al. The evolution of niche overlap and competitive differences. Nat Ecol Evol 5, 330–337 (2021). https://doi.org/10.1038/s41559-020-01383-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-020-01383-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing