Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Proteotoxic stress is a driver of the loser status and cell competition

Abstract

Cell competition allows winner cells to eliminate less fit loser cells in tissues. In Minute cell competition, cells with a heterozygous mutation in ribosome genes, such as RpS3+/− cells, are eliminated by wild-type cells. How cells are primed as losers is partially understood and it has been proposed that reduced translation underpins the loser status of ribosome mutant, or Minute, cells. Here, using Drosophila, we show that reduced translation does not cause cell competition. Instead, we identify proteotoxic stress as the underlying cause of the loser status for Minute competition and competition induced by mahjong, an unrelated loser gene. RpS3+/− cells exhibit reduced autophagic and proteasomal flux, accumulate protein aggregates and can be rescued from competition by improving their proteostasis. Conversely, inducing proteotoxic stress is sufficient to turn otherwise wild-type cells into losers. Thus, we propose that tissues may preserve their health through a proteostasis-based mechanism of cell competition and cell selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reduced protein synthesis does not confer the loser status.
Fig. 2: Prospective losers display defective autophagic flux.
Fig. 3: Autophagy impairment does not confer the loser status.
Fig. 4: Prospective losers display proteotoxic stress.
Fig. 5: Alleviating proteotoxic stress rescues the loser status.
Fig. 6: Proteotoxic stress is sufficient to confer the loser status.

Similar content being viewed by others

Data availability

The following publicly available databases were used in this study: FlyBase (https://flybase.org) and the UniProt D. melanogaster proteome (https://www.uniprot.org/proteomes/UP000000803). Source data are provided with this paper. All other data supporting the findings of this study are available upon reasonable request.

Code availability

The Fiji-based custom-made script can be made available to individuals upon reasonable request while we seek to publish it independent of this study.

References

  1. Morata, G. & Ripoll, P. Minutes: mutants of Drosophila autonomously affecting cell division rate. Dev. Biol. 42, 211–221 (1975).

    Article  CAS  PubMed  Google Scholar 

  2. Baker, N. E. Mechanisms of cell competition emerging from Drosophila studies. Curr. Opin. Cell Biol. 48, 40–46 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maruyama, T. & Fujita, Y. Cell competition in mammals—novel homeostatic machinery for embryonic development and cancer prevention. Curr. Opin. Cell Biol. 48, 106–112 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Merino, M. M. et al. Elimination of unfit cells maintains tissue health and prolongs lifespan. Cell 160, 461–476 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brown, S. et al. Correction of aberrant growth preserves tissue homeostasis. Nature 548, 334–337 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu, N. et al. Stem cell competition orchestrates skin homeostasis and ageing. Nature 568, 344–350 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Vishwakarma, M. & Piddini, E. Outcompeting cancer. Nat. Rev. Cancer 20, 187–198 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Marygold, S. J. et al. The ribosomal protein genes and Minute loci of Drosophila melanogaster. Genome Biol. 8, R216 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mills, E. W. & Green, R.Ribosomopathies: there’s strength in numbers.Science 358, eaan2755 (2017).

    Article  PubMed  Google Scholar 

  10. Baker, N. E. Cell competition. Curr. Biol. 21, R11–R15 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Ajore, R. et al. Deletion of ribosomal protein genes is a common vulnerability in human cancer, especially in concert with TP53 mutations. EMBO Mol. Med. 9, 498–507 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baker, N. E. Emerging mechanisms of cell competition. Nat. Rev. Genet. 21, 683–697 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Rhiner, C. et al. Flower forms an extracellular code that reveals the fitness of a cell to its neighbors in Drosophila. Dev. Cell 18, 985–998 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Meyer, S. N. et al. An ancient defense system eliminates unfit cells from developing tissues during cell competition. Science 346, 1258236 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baillon, L., Germani, F., Rockel, C., Hilchenbach, J. & Basler, K. Xrp1 is a transcription factor required for cell competition-driven elimination of loser cells. Sci. Rep. 8, 17712 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kale, A., Li, W., Lee, C.-H. & Baker, N. E. Apoptotic mechanisms during competition of ribosomal protein mutant cells: roles of the initiator caspases Dronc and Dream/Strica. Cell Death Differ. 22, 1300–1312 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee, C.-H. et al. A regulatory response to ribosomal protein mutations controls translation, growth, and cell competition. Dev. Cell 46, 456–469.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nagata, R., Nakamura, M., Sanaki, Y. & Igaki, T. Cell competition is driven by autophagy. Dev. Cell 51, 99–112.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Blanco, J., Cooper, J. C. & Baker, N. E. Roles of C/EBP class bZip proteins in the growth and cell competition of Rp (‘Minute’) mutants in Drosophila. eLife 9, e50535 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kucinski, I., Dinan, M., Kolahgar, G. & Piddini, E. Chronic activation of JNK JAK/STAT and oxidative stress signalling causes the loser cell status. Nat. Commun. 8, 136 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kale, A. et al. Ribosomal protein S12e has a distinct function in cell competition. Dev. Cell 44, 42–55.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Milán, M. Survival of the fittest. Cell competition in the Drosophila wing. EMBO Rep. 3, 724–725 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Moreno, E. & Basler, K. dMyc transforms cells into super-competitors. Cell 117, 117–129 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Amoyel, M. & Bach, E. A. Cell competition: how to eliminate your neighbours. Development 141, 988–1000 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Coelho, C. M. A. Growth and cell survival are unevenly impaired in pixie mutant wing discs. Development 132, 5411–5424 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Moreno, E., Basler, K. & Morata, G. Cells compete for decapentaplegic survival factor to prevent apoptosis in Drosophila wing development. Nature 416, 755–759 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Li, W. & Baker, N. E. Engulfment is required for cell competition. Cell 129, 1215–1225 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Imai, Y. et al. Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila.EMBO J. 27, 2432–2443 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mader, S., Lee, H., Pause, A. & Sonenberg, N. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol. Cell. Biol. 15, 4990–4997 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tamori, Y. et al. Involvement of Lgl and Mahjong/VprBP in cell competition. PLoS Biol. 8, e1000422 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tamori, Y. & Deng, W.-M. Cell competition and its implications for development and cancer. J. Genet. Genomics 38, 483–495 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sykiotis, G. P. & Bohmann, D. Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Dev. Cell 14, 76–85 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pakos-Zebrucka, K. et al. The integrated stress response. EMBO Rep. 17, 1374–1395 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jain, A. et al. p62/Sequestosome-1, autophagy-related gene 8, and autophagy in Drosophila are regulated by nuclear factor erythroid 2-related factor 2 (NRF2), independent of transcription factor TFEB. J. Biol. Chem. 290, 14945–14962 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Silva-Islas, C. A. & Maldonado, P. D. Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacol. Res. 134, 92–99 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Lamb, C. A., Yoshimori, T. & Tooze, S. A. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14, 759–774 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Mauvezin, C., Ayala, C., Braden, C. R., Kim, J. & Neufeld, T. P. Assays to monitor autophagy in Drosophila. Methods 68, 134–139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chang, Y.-Y. & Neufeld, T. P. An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation. Mol. Biol. Cell 20, 2004–2014 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Piddini, E., Marshall, F., Dubois, L., Hirst, E. & Vincent, J.-P. Arrow (LRP6) and Frizzled2 cooperate to degrade Wingless in Drosophila imaginal discs. Development 132, 5479–5489 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Sancho, M. et al. Competitive interactions eliminate unfit embryonic stem cells at the onset of differentiation. Dev. Cell 26, 19–30 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Paramore, A. & Frantz, S. Bortezomib. Nat. Rev. Drug Discov. 2, 611–612 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Pandey, U. B. et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447, 859–863 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Sung, M.-K., Reitsma, J. M., Sweredoski, M. J., Hess, S. & Deshaies, R. J. Ribosomal proteins produced in excess are degraded by the ubiquitin–proteasome system. Mol. Biol. Cell 27, 2642–2652 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kraft, C., Deplazes, A., Sohrmann, M. & Peter, M. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat. Cell. Biol. 10, 602–610 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Wyant, G. A. et al. NUFIP1 is a ribosome receptor for starvation-induced ribophagy. Science 360, 751–758 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tye, B. W. et al. Proteotoxicity from aberrant ribosome biogenesis compromises cell fitness. eLife 8, e43002 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Albert, B. et al. A ribosome assembly stress response regulates transcription to maintain proteome homeostasis. eLife 8, e45002 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rubinsztein, D. C. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780–786 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Nezis, I. P. et al. Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain. J. Cell Biol. 180, 1065–1071 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cullinan, S. B. & Diehl, J. A. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J. Biol. Chem. 279, 20108–20117 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Bjedov, I. et al. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 11, 35–46 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li, J., Kim, S. G. & Blenis, J. Rapamycin: one drug, many effects. Cell Metab. 19, 373–379 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Laplante, M. & Sabatini, D. M. mTOR signaling. Cold Spring Harb. Perspect. Biol. 4, a011593 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Webb, A. E. & Brunet, A. FOXO transcription factors: key regulators of cellular quality control. Trends Biochem. Sci. 39, 159–169 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Klockgether, T., Mariotti, C. & Paulson, H. L. Spinocerebellar ataxia. Nat. Rev. Dis. Prim. 5, 24 (2019).

    Article  PubMed  Google Scholar 

  56. Bonini, N. M. A genetic model for human polyglutamine-repeat disease in Drosophila melanogaster. Phil. Trans. R. Soc. Lond. B Biol. Sci. 354, 1057–1060 (1999).

    Article  CAS  Google Scholar 

  57. Recasens-Alvarez, C. et al. Ribosomopathy-associated mutations cause proteotoxic stress that is alleviated by TOR inhibition. Nat. Cell Biol. (2020).

  58. Coelho, D. S. et al. Culling less fit neurons protects against amyloid-β-induced brain damage and cognitive and motor decline. Cell Rep. 25, 3661–3673.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Guang, M. H. Z. et al. Targeting proteotoxic stress in cancer: a review of the role that protein quality control pathways play in oncogenesis. Cancers 11, 66 (2019).

    Article  CAS  Google Scholar 

  60. Jarosz, D. F., Taipale, M. & Lindquist, S. Protein homeostasis and the phenotypic manifestation of genetic diversity: principles and mechanisms. Annu. Rev. Genet. 44, 189–216 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Kaushik, S. & Cuervo, A. M. Proteostasis and aging. Nat. Med. 21, 1406–1415 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Taylor, R. C. & Dillin, A. Aging as an event of proteostasis collapse. Cold Spring Harb. Perspect. Biol. 3, a004440 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Katheder, N. S. et al. Microenvironmental autophagy promotes tumour growth. Nature 541, 417–420 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gay, P. & Contamine, D. Study of the ref(2)P locus of Drosophila melanogaster. II. Genetic studies of the 37DF region. Mol. Gen. Genet. 239, 361–370 (1993).

    Article  CAS  PubMed  Google Scholar 

  65. Zhou, Q., Neal, S. J. & Pignoni, F. Mutant analysis by rescue gene excision: new tools for mosaic studies in Drosophila. Genesis 54, 589–592 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Piddini group for input on the project and manuscript and R. Carazo Salas for feedback and discussions on the data. We thank the Wolfson Bioimaging Facility for access to microscopes and for assistance in performing the electron microscopy. We thank the University of Bristol Proteomics Facility for performing the TMT proteomics experiments and for proteomics bioinformatics support. We are grateful to T. E. Rusten for the generous gift of the p62 antibody. This work was supported by Wellcome Trust PhD studentships to M.P.D. and I.K., a Cancer Research UK Programme grant to E.P. (A12460), a Cancer Research UK Programme Foundation Award to E.P. (grant C38607/A26831) and a Royal Society University Research Fellowship to E.P. (UF0905080). E.P. is a Wellcome Trust Senior Research Fellow (205010/Z/16/Z).

Author information

Authors and Affiliations

Authors

Contributions

E.P. led the project. All authors conceived of the experiments. M.P.D., M.E.B., I.K. and P.F.L. performed and analysed the experiments. M.P.D., M.E.B., P.F.L. and E.P. wrote the manuscript.

Corresponding author

Correspondence to Eugenia Piddini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Cell Biology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Protein synthesis and its regulation in Rps3+/− cells.

(a-c) AHA (grey) protein synthesis assay in wing discs harboring either Rps3+/− clones (GFP-positive) (a) or clones overexpressing 4EBPTA (GFP-positive) (b), and corresponding quantification (n = 7 and 7, respectively, two-sided paired t-test without p-adjustment for multiple comparisons) (c). (d-e) OPP (green) protein synthesis assay in a wing disc expressing mahj-RNAi in the P compartment (positively labelled with RFP) (d) and corresponding quantification (n = 10, two-sided Wilcoxon signed-rank test) (e). (f-g) An RpS3+/− wing disc expressing GADD34 in the P compartment and labelled with phospho-eIF2α (red) (f), and corresponding quantification (n = 10, two-sided paired t-test) (g). (h-i) GST-GFP reporter (green) activation in an RpS3+/− wing disc expressing GADD34 in the P compartment (h), and corresponding quantification (n = 10, two-sided paired t-test) (i). For all micrographs, scale bars correspond to 50 µm. For all quantifications provided, the horizontal line represents the mean and whiskers indicate 95% confidence intervals. All n numbers refer to the number of individual wing discs.

Source data

Extended Data Fig. 2 The role of autophagy in prospective losers.

(a) GstD1-GFP signal (green) in a RpS3+/− wing disc expressing Puc in P cells (labelled by the absence of Ci, magenta). (b-c) Apoptotic cell death, as detected by anti-cleaved Caspase-3 reactivity (red), in wing discs of an atg8+/− heterozygote (b, left), RpS3+/− heterozygote (b, middle), or atg8+/−, RpS3+/− transheterozygote (b, right) and corresponding quantification (n = 9, 8, and 9 respectively, two-sided two sample Kolmgorov-Smirnov test without p-adjustment for multiple comparisons) (c). (d) Apoptotic cell death, as detected by anti-cleaved Caspase-3 reactivity (red), in wing discs of an atg13+/− heterozygote (d, left), RpS3+/− heterozygote (d, middle), or atg13+/−, RpS3+/− transheterozygote (d, right). (e-f) Apoptotic cell death, as detected by anti-cleaved dcp1 antibody staining (red), in wing discs of a p62+/− heterozygote (f, left), RpL27A+/− heterozygote (f, middle), or RpL27A+/−, p62+/− transheterozygote (f, right) and corresponding quantification (n = 10, 10, and 12 respectively, two-sided Mann-Whitney U test without p-adjustment for multiple comparisons) (e). (g-i) Wing discs harboring RpS3+/− clones (GFP-positive) (h, left), RpS3+/− clones expressing atg1-RNAi (GFP-positive) (h, middle), or RpS3+/− clones expressing atg9-RNAi (GFP-positive) (h, right) stained with cleaved-dcp1 (red) and corresponding quantification of border cell death (n = 16, 12, and 9 respectively, two-sided Mann-Whitney U test without p-adjustment for multiple comparisons) (g) and clone coverage (n = 16, 12, and 9 respectively, two-sided student’s t-test without p-adjustment for multiple comparisons) (i). For all micrographs, scale bars correspond to 50 µm. For all quantifications provided, the horizontal line represents the mean and whiskers indicate 95% confidence intervals. All n numbers refer to the number of individual wing discs.

Source data

Extended Data Fig. 3 Autophagy flux in ribosome mutants and upon translation inhibition.

(a-c) GFP-p62 ReFlux signal (green) in wing discs expressing RNAi against the autophagy gene atg1 specifically in P cells (labelled by the absence of Ci, magenta), immediately after heat shock (a) or three hours later (b), and corresponding signal quantifications (n = 7 and 6 respectively, two-sided two sample Kolmgorov-Smirnov test) (c). (d-f) GFP-p62 ReFlux signal (green) in a wing disc harboring RpS3+/− clones (dsRed-positive) three hours after heat-shock (d) and corresponding quantification of GFP-p62 signal intensity (e) and number of GFP-p62 foci per area (f) (for both measurements, n = 5, two-sided paired t-test). (g) GFP-p62 ReFlux signal (green) in wing discs harboring RpS3+/− A cells and wild-type P cells, three hours after heat-shock, with or without addition of chloroquine, as indicated. (h) GFP-p62 ReFlux signal (green) in wing discs harboring RpS3+/− A cells (dsRed-positive) and wild-type P cells (dsRed-negative) twenty-four hours after heat-shock. (i-k) GFP-p62 ReFlux signal (green) in wing discs harboring wild-type A cells and 4E-BPTA-expressing P cells (labelled by the absence of Ci, magenta), immediately after heat shock (i) or three hours later (j), and corresponding signal quantifications relative to wing discs containing an RpS3+/− A compartment and wildtype P compartment (images not shown) (n = 9 and 8 for 0 and 3 hour 4E-BPTA, and n = 7 and 8 for 0 and 3 hour RpS3+/−, respectively; two-sided two-sample Kolmgorov-Smirnov test without p-adjustment for multiple comparisons) (k). For all micrographs, scale bars correspond to 50 µm. For all quantifications provided, the horizontal line represents the mean and whiskers indicate 95% confidence intervals. All n numbers refer to the number of individual wing discs.

Source data

Extended Data Fig. 4 Proteasome defects are linked to the prospective loser status but not to translation inhibition.

(a-b) Apoptosis as detected by anti-cleaved caspase-3 reactivity (green), in Prosβ2+/− (a, left), RpS3+/− (a, middle), or Prosβ2+/−, RpS3+/− transheterozygote (a, right) wing discs and corresponding quantification (n = 10, 10, and 10 respectively, two-sided two sample Kolmgorov-Smirnov test without p-adjustment for multiple comparisons) (b). (c-d) Apoptotic cell death as detected by cleaved-dcp1 (red) in Prosβ2+/− (c, left), a RpL27A+/− (c, middle), or a RpL27A+/−, prosβ2+/− transheterozygote (c, right) wing discs, and corresponding quantification (n = 8, 13, and 10 respectively, two-sided Mann-Whitney U test without p-adjustment for multiple comparisons) (d). (e-g) ProteoFLUX CL1-GFP signal (green) in wing discs expressing mahj-RNAi in the P compartment (RFP-positive), immediately after heat shock (e) or two hours later (f) and corresponding signal quantifications (n = 9 and 7 respectively, two-sided two sample Kolmgorov-Smirnov test) (g). (h-j) ProteoFLUX CL1-GFP signal (green) in wing discs harboring wild-type A cells and 4E-BPTA-expressing P cells (labelled by the absence of Ci, magenta), immediately after heat shock (h) or two hours later (i), and corresponding signal quantifications relative to wing discs containing an RpS3+/− A compartment and wildtype P compartment (images not shown) (n = 9 and 10 for 0 and 2 hour 4E-BPTA, and n = 7 and 7 for 0 and 2 hour RpS3+/−, respectively; two-sided two-sample Kolmgorov-Smirnov test without p-adjustment for multiple comparisons) (j). (k) Transmission Electron microscopy images of a wing disc with wildtype P (left panel) and RpS3+/− A compartments (right panel). Red arrows indicate phago-lysosomal structures containing ribosomes. The scale bar is 500 nm. (l-m) Phospho-eIF2α staining (red) in wing discs harboring RpS3+/− A cells (GFP-positive) and wild-type P cells (GFP-negative) (l) and corresponding signal quantifications (n = 6, two-sided Wilcoxon ranked-sum test) (m). (n-o) A wing disc harboring RpS3+/− clones (GFP-positive) and stained for phospho-eIF2α (red) (n) and corresponding signal quantification (n = 9, two-sided paired t-test) (o). For all micrographs other than those in (k), scale bars correspond to 50 µm. For all quantifications, the horizontal line represents the mean and whiskers indicate 95% confidence intervals. All n numbers refer to the number of individual wing discs.

Source data

Extended Data Fig. 5 Proteostasis and the oxidative stress response.

(a-c) GstD1-GFP signal (green) in wild type (a) or RpS3+/− wing discs (b) fed DMSO control or 10μM bortezomib, as indicated, and corresponding quantification (n = 7, 8, 12, and 12, two-sided Mann-Whitney U test without p-adjustment for multiple comparisons) (c). (d-f) Wing discs harboring GFP-positive clones expressing MJDQ27 (d) or MJDQ78 (e) and stained with cleaved-dcp1 (red) and corresponding quantification of cell death (n = 17 and 15 respectively, two-sided Wilcoxon signed-rank test without p-adjustment for multiple comparisons) (f). For all micrographs, scale bars correspond to 50 µm. For all quantifications provided, the horizontal line represents the mean and whiskers indicate 95% confidence intervals. All n numbers refer to the number of individual wing discs.

Source data

Supplementary information

Reporting Summary

Supplementary Tables

Supplementary Tables 1–3

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baumgartner, M.E., Dinan, M.P., Langton, P.F. et al. Proteotoxic stress is a driver of the loser status and cell competition. Nat Cell Biol 23, 136–146 (2021). https://doi.org/10.1038/s41556-020-00627-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-020-00627-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing