Skip to main content
Log in

Proximity Effect in Heterostructures Based on a Superconductor/Half-Metal System

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

We have demonstrated that with increasing the exchange splitting of the conduction band of a ferromagnet and, respectively, of the degree of the spin polarization, the probability of transmission of the superconducting Cooper pairs through the S/F interface decreases. We have concluded that the spin imbalance plays a key role in the processes taking place at the interface between a superconductor and a ferromagnet with spin-polarized conduction electrons. We have studied the superconducting spin-valve effect in F1/F2/S heterostructures containing the Heusler alloy Co2Cr1 – xFexAly as one of two ferromagnetic (F1 or F2) layers. We have used the Heusler alloy layer in two roles: as a weak ferromagnet on the place of the F2 layer and as a half-metal on the place of the F1 layer. In the first case, we have obtained the full switching between the normal and superconducting states is realized with the dominant aid of the long-range triplet component of the superconducting pair condensate which occurs at the perpendicular mutual orientation of magnetizations. In the second case, we have observed separation between the superconducting transitions for perpendicular and parallel configurations of magnetizations reaching 0.5 K. We have also found good agreement between our experimental data and theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. K. B. Efetov, I. A. Garifullin, A. F. Volkov, and K. Westerholt, in Magnetic Heterostructures, Advances and Perspectives in Spin-Structures and Spintransport, Springer Tracts Mod. Phys. 227, 251 (2007).

  2. M. G. Blamire and J. W. A. Robinson, J. Phys.: Condens. Matter 26, 253201 (2014).

    ADS  Google Scholar 

  3. J. Linder and J. W. A. Robinson, Nat. Phys. 11, 307 (2015).

    Article  Google Scholar 

  4. W. E. Pickett and J. S. Moodera, Phys. Today 54, 39 (2001).

    Article  ADS  Google Scholar 

  5. V. Yu. Irkhin and M. I. Katsel’son, Phys. Usp. 37, 659 (1994).

    Article  ADS  Google Scholar 

  6. S. Oh, D. Youm, and M. R. Beasley, Appl. Phys. Lett. 71, 2376 (1997).

    Article  ADS  Google Scholar 

  7. P. V. Leksin, N. N. Garif’yanov, I. A. Garifullin, J. Schumann, H. Vinzelberg, V. Kataev, R. Klingeler, O. G. Schmidt, and B. Büchner, Appl. Phys. Lett. 97, 102505 (2010).

    Article  ADS  Google Scholar 

  8. Ya. V. Fominov, A. A. Golubov, T. Yu. Karminskaya, M. Yu. Kupriyanov, R. G. Deminov, and L. R. Tagirov, JETP Lett. 91, 308 (2010).

    Article  ADS  Google Scholar 

  9. P. V. Leksin, N. N. Garif’yanov, I. A. Garifullin, Ya. V. Fominov, J. Schumann, Y. Krupskaya, V. Kataev, O. G. Schmidt, and B. Büchner, Phys. Rev. Lett. 109, 057005 (2012).

    Article  ADS  Google Scholar 

  10. I. A. Garifullin, P. V. Leksin, N. N. Garif’yanov, A. A. Kamashev, Ya. V. Fominov, J. Schumann, Y. Krupskaya, V. Kataev, O. G. Schmidt, and B. Büchner, J. Magn. Magn. Mater. 373, 18 (2015).

    Article  ADS  Google Scholar 

  11. S. Takahashi, H. Imamura, and S. Maekawa, Phys. Rev. Lett. 82, 3911 (1999).

    Article  ADS  Google Scholar 

  12. S. Mironov and A. I. Buzdin, Phys. Rev. B 92, 184506 (2015).

    Article  ADS  Google Scholar 

  13. Y. V. Kudryavtsev, V. N. Uvarov, V. A. Oksenenko, Y. P. Lee, J. B. Kim, Y. H. Hyun, K. W. Kim, J. Y. Rhee, and J. Dubowik, Phys. Rev. B 77, 195104 (2008).

    Article  ADS  Google Scholar 

  14. N. I. Kourov, A. V. Korolev, N. V. Marchenkov, A. V. Lukojanov, and K. A. Belozerova, Phys. Solid State 55, 927 (2013).

    ADS  Google Scholar 

  15. I. Galanakis, P. H. Dederichs, and N. Papanikolaou, Phys. Rev. B 66, 174429 (2002).

    Article  ADS  Google Scholar 

  16. A. A. Kamashev, P. V. Leksin, J. Schumann, V. Kataev, J. Thomas, T. Gemming, B. Büchner, and I. A. Garifullin, Phys. Rev. B 96, 024512 (2017).

    Article  ADS  Google Scholar 

  17. A. Singh, S. Voltan, K. Lahabi, and J. Aarts, Phys. Rev. X 5, 021019 (2015).

    Google Scholar 

  18. P. V. Leksin, N. N. Garif’yanov, A. A. Kamashev, A. A. Validov, Ya. V. Fominov, J. Schumann, V. Kataev, J. Thomas, B. Büchner, and I. A. Garifullin, Phys. Rev. B 93, 100502(R) (2016).

  19. P. V. Leksin, A. A. Kamashev, J. Schumann, V. Kataev, J. Thomas, B. Büchner, and I. A. Garifullin, Nano Res. 9, 1005 (2016).

    Article  Google Scholar 

  20. R. J. Soulen, Jr., J. M. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak, J. S. Moodera, A. Barry, and J. M. D. Coey, Science (Washington, DC, U. S.) 282, 85 (1998).

    Article  ADS  Google Scholar 

  21. G. J. Strijkers, Y. Ji, F. Y. Yang, C. L. Chien, and J. M. Byers, Phys. Rev. B 63, 104510 (2001).

    Article  ADS  Google Scholar 

  22. P. V. Leksin, N. N. Garif’yanov, A. A. Kamashev, Ya. V. Fominov, J. Schumann, C. Hess, V. Kataev, B. Büchner, and I. A. Garifullin, Phys. Rev. B 91, 214508 (2015).

    Article  ADS  Google Scholar 

  23. A. A. Kamashev, N. N. Garif’yanov, A. A. Validov, J. Schumann, V. Kataev, B. Büchner, Ya. V. Fominov, and I. A. Garifullin, Phys. Rev. B 100, 134511 (2019).

    Article  ADS  Google Scholar 

  24. S. Husain, S. Akansel, A. Kumar, P. Svedlindh, and S. Chaudhary, Sci. Rep. 6, 20452322 (2016).

    Google Scholar 

  25. P. V. Leksin, R. I. Salikhov, I. A. Garifullin, H. Vinzelberg, V. Kataev, R. Klingeler, L. R. Tagirov, and B. Büchner, JETP Lett. 90, 64 (2009).

    Article  ADS  Google Scholar 

  26. A. A. Kamashev, P. V. Leksin, N. N. Garif’yanov, A. A. Validov, J. Schumann, V. Kataev, B. Büchner, and I. A. Garifullin, J. Magn. Magn. Mater. 459, 7 (2018).

    Article  ADS  Google Scholar 

  27. M. Yu. Kuprianov and V. F. Lukichev, Sov. Phys. JETP 67, 1163 (1988).

    Google Scholar 

  28. K. Halterman and M. Alidoust, Phys. Rev. B 94, 064503 (2016).

    Article  ADS  Google Scholar 

  29. A. A. Kamashev, N. N. Garif’yanov, A. A. Validov, J. Schumann, V. Kataev, B. Büchner, Ya. V. Fominov, and I. A. Garifullin, Beilstein J. Nanotechnol. 10, 1458 (2019).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Dr. Vladislav Kataev, Prof. Bernd Büchner, Dr. Joachim Schumann (Leibniz-Institut für Festkörper-und Werkstoffforschung, Dresden), to Dr. Pavel Leksin, Dr. Nadir Garif’yanov, and Dr. Aidar Validov (Zavoisky Physical–Technical Institute, Russian Academy of Sciences), and to Dr. Yakov Fominov (Landau Institute for the Theoretical Physics, Russian Academy of Sciences) for cooperation in the reviewed studies.

Funding

The reviewed studies, whose main results were reported in [16, 23, 26, 29], were supported by the Russian Foundation for Basic Research, project no. 17-02-00229.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kamashev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamashev, A.A., Garifullin, I.A. Proximity Effect in Heterostructures Based on a Superconductor/Half-Metal System. Jetp Lett. 113, 194–206 (2021). https://doi.org/10.1134/S0021364021030012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021030012

Navigation