Skip to main content
Log in

Performance of the RegCM-MITgcm Coupled Regional Model in Simulating the Indian Summer Monsoon Rainfall

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

An effort is made to evaluate the performance of an atmosphere–ocean coupled regional model in simulating the Indian summer monsoon rainfall during the years 1995–2015. The RegCM and MITgcm models are taken as the atmospheric and oceanic components of the coupled model, respectively. It is found that the coupling helps to improve the SST of the Arabian Sea and Bay of Bengal regions of the model domain. The air–sea coupling also improves the wind speed simulation. The RegCM-MITgcm coupled model correctly represents the intraseasonal variability of the Indian summer monsoon rainfall as compared to the RegCM stand-alone model. It is shown that the very high and extreme rainfall intensity events are correctly simulated by the RegCM-MITgcm coupled model, whereas the RegCM stand-alone model underestimates the precipitation intensities. It is argued that the atmosphere–ocean coupling helps to increase the predictability skill of the Indian monsoon rainfall. For example, the limit of predictability of the Indian monsoon rainfall obtained from the coupled model (22 days) is closer to that obtained from the IMD observation (24 days). The corresponding limit of predictability from the stand-alone model is 20 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adcroft, A. et al. (2017). MITGCM User Manual, http://mitgcm.org/public/r2_manual/latest/online_documents/manual.html.

  • Ajay, P., Pathak, B., Solmon, F., Bhuyan, P. K., & Giorgi, F. (2019). Obtaining best parameterization scheme of RegCM 4.4 for aerosols and chemistry simulations over the CORDEX South Asia. Climate Dynamics, 53(1–2), 329–352.

    Google Scholar 

  • Aldrian, E., Sein, D., Jacob, D., Gates, L. D., & Podzun, R. (2005). Modelling Indonesian rainfall with a coupled regional model. Climate Dynamics, 25, 1–17.

    Google Scholar 

  • Byrne, D., Münnich, M., Frenger, I., & Gruber, N. (2016). Mesoscale atmosphere ocean coupling enhances the transfer of wind energy into the ocean. Nature Communications. https://doi.org/10.1038/ncomms11867.

    Article  Google Scholar 

  • Charney, J. G., & Shukla, J. (1981). Predictability of monsoon. In J. Lighthill & R. P. Pearce (Eds.), Monsoon dynamics (pp. 99–110). Cambridge: Cambridge University Press.

    Google Scholar 

  • Choudhary, A., & Dimri, A. P. (2018). Assessment of CORDEX-South Asia experiments for monsoonal precipitation over Himalayan region for future climate. Climate Dynamics, 50, 3009–3030.

    Google Scholar 

  • Choudhary, A., Dimri, A. P., & Maharana, P. (2018). Assessment of CORDEX-South Asia experiments for monsoonal precipitation over Himalayan region for future climate. Climate Dynamics, 50(7–8), 3009–3030.

    Google Scholar 

  • Collins, N., Theurich, G., DeLuca, C., Suarez, M., Trayanov, A., Balaji, V., Peggy, L., et al. (2005). Design and implementation of components in the earth system modeling framework. The International Journal of High-Performance Computing Applications, 19(3), 341–350.

    Google Scholar 

  • Crueger, T., Stevens, B., & Brokopf, R. (2013). The Madden–Julian oscillation in ECHAM6 and the introduction of an objective MJO metric. Journal of Climate, 26(10), 3241–3257.

    Google Scholar 

  • Das, S., Dey, S., Dash, S. K., Giuliani, G., & Solmon, F. (2015). Dust aerosol feedback on the Indian summer monsoon: Sensitivity to absorption property. Journal of Geophysical Research Atmospheres, 120(18), 9642–9652.

    Google Scholar 

  • Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. The Quarterly Journal Royal Meteorological Society, 137, 553–597.

    Google Scholar 

  • Di Sante, F., Coppola, E., Farneti, R., & Giorgi, F. (2019). Indian summer monsoon as simulated by the regional earth system model RegCM-ES: The role of local air–sea interaction. Climate Dynamics. https://doi.org/10.1007/s00382-019-04612-8.

    Article  Google Scholar 

  • Dwivedi, S. (2012). Quantifying predictability of Indian summer monsoon intraseasonal oscillations using nonlinear time series analysis. Meteorologische Zeitschrift, 21(4), 413–419.

    Google Scholar 

  • Dwivedi, S., Goswami, B. N., & Kucharski, F. (2015). Unraveling the missing link of ENSO control over the Indian monsoon rainfall. Geophysical Reseach Letters, 42(19), 8201–8207.

    Google Scholar 

  • Dwivedi, S., Mishra, A. K., & Srivastava, A. (2019). Upper ocean high resolution regional modeling of the Arabian Sea and Bay of Bengal. Acta Oceanologica Sinica, 38(5), 32–50.

    Google Scholar 

  • Dwivedi, S., & Mittal, A. K. (2007). Forecasting the duration of active and break spells in intrinsic mode functions of Indian monsoon intraseasonal oscillations. Geophysical Research Letters. https://doi.org/10.1029/2007gl030540.

    Article  Google Scholar 

  • Dwivedi, S., Mittal, A. K., & Goswami, B. N. (2006). An empirical rule for extended range prediction of Indian summer monsoon breaks. Geophysical Research Letters. https://doi.org/10.1029/2006gl027035.

    Article  Google Scholar 

  • Dwivedi, S., Mittal, A. K., & Pandey, A. C. (2007). Effect of averaging timescale on a forced Lorenz model. Atmosphere-Ocean, 45(2), 71–79.

    Google Scholar 

  • Dwivedi, S., & Pandey, A. C. (2015). Forecasting the Indian summer monsoon intraseasonal oscillations using genetic algorithm and neural network. Geophysical Research Letters. https://doi.org/10.1029/2011gl048314.

    Article  Google Scholar 

  • Dwivedi, S., Srivastava, A., & Mishra, A. K. (2018). Upper ocean four-dimensional variational data assimilation in the Arabian Sea and Bay of Bengal. Marine Geodesy, 41(3), 230–257.

    Google Scholar 

  • Emanuel, K. A., & Zivkovic-Rothman, M. (1999). Development and evaluation of a convection scheme for use in climate models. Journal of the Atmospheric Sciences, 56, 1766–1782.

    Google Scholar 

  • Findlater, J. (1969). A major low-level air current near the Indian Ocean during the northern summer. The Quarterly Journal Royal Meteorological Society, 95(404), 362–380.

    Google Scholar 

  • Fu, X., Wang, W., Lee, J. Y., Wang, B., Kikuchi, K., Xu, J., et al. (2015). Distinctive roles of air–sea coupling on different MJO events: A new perspective revealed from the DYNAMO/CINDY field campaign. Monthly Weather Review, 143(3), 794–812.

    Google Scholar 

  • Fu, X., Wang, B., & Li, T. (2002). Impacts of air-sea coupling on the simulation of mean Asian summer monsoon in the ECHAM4 model. Monthly Weather Review, 130, 2889–2904.

    Google Scholar 

  • Fu, X., Wang, B., Li, T., & McCreary, J. P. (2003). Coupling between northward-propagating, intraseasonal oscillations and sea surface temperature in the Indian Ocean. Journal of the Atmospheric Sciences, 60(15), 1753–1755.

    Google Scholar 

  • Fu, X., Wang, B., Waliser, D. E., & Tao, L. (2007). Impact of atmosphere–ocean coupling on the predictability of monsoon intraseasonal oscillations. Journal of the Atmospheric Sciences, 64(1), 157–174.

    Google Scholar 

  • Ghosh, S., Bhatla, R., Mall, R. K., Srivastava, P. K., & Sahai, A. K. (2019). Aspect of ECMWF downscaled Regional Climate Modeling in simulating Indian summer monsoon rainfall and dependencies on lateral boundary conditions. Theoretical and Applied Climatology, 135(3–4), 1559–1581.

    Google Scholar 

  • Giorgi, F., Coppola, E., Solmon, F., Mariotti, L., Sylla, M. B., Bi, X., et al. (2012). RegCM4: Model description and preliminary tests over multiple CORDEX domains. Climatic Research, 52, 7–29.

    Google Scholar 

  • Giorgi, F., Jones, C., & Asrar, G. R. (2009). Addressing climate information needs at the regional level: the CORDEX framework. World Meteorological Organization (WMO). Bulletin, 258(3), 175.

    Google Scholar 

  • Goswami, B. N. (2005). South Asian monsoon. In W. K. M. Lau & D. E. Waliser (Eds.), Intraseasonal variability of the atmosphere-ocean climate system (pp. 19–61). Berlin: Springer.

    Google Scholar 

  • Goswami, B. N., & Mohan, R. A. (2001). Intraseasonal oscillations and interannual variability of the Indian summer monsoon. Journal of Climate, 14(6), 1180–1198.

    Google Scholar 

  • Goswami, B. N., Rao, S., Sengupta, D., & Chowdary, S. (2016). Monsoons to mixing in the Bay of Bengal: Multiscale air–sea interactions and monsoon predictability. Oceanography, 29, 18–27.

    Google Scholar 

  • Green, B. W., & Zhang, F. (2013). Impacts of air–sea flux parameterizations on the intensity and structure of tropical cyclones. Monthly Weather Review, 141(7), 2308–2324.

    Google Scholar 

  • Grell, G., Dudhia, J., & Tauffer, D. (1995). A description of the fifth- generation Penn State/NCAR mesoscale model (MM5), Technical report, NCAR, NCAR/TN-398 + STR.

  • Halder, S., Dirmeyer, P. A., & Saha, S. K. (2015). Sensitivity of the mean and variability of Indian summer monsoon to land surface schemes in RegCM4: Understanding coupled land-atmosphere feedbacks. Journal of Geophysical Research Atmospheres, 120(18), 9437–9458.

    Google Scholar 

  • Ham, S., Hong, S. Y., & Park, S. (2014). A study on air–sea interaction on the simulated seasonal climate in an ocean–atmosphere coupled model. Climate Dynamics, 42(5–6), 1175–1187.

    Google Scholar 

  • Hendon, H. H. (2000). Impact of air–sea coupling on the Madden–Julian oscillation in a general circulation model. Journal of the Atmospheric Sciences, 57(24), 3939–3952.

    Google Scholar 

  • Holtslag, A. A. M., de Bruijn, E. I. F., & Pan, H. L. (1990). A high resolution air mass transformation model for short-range weather forecasting. Monthly Weather Review, 118, 1561–1575.

    Google Scholar 

  • Inness, P. M., Slingo, J. M., Guilyardi, E., & Cole, J. (2003). Simulation of the Madden–Julian oscillation in a coupled general circulation model. Part II: The role of the basic state. Journal of Climate, 16(3), 365–382.

    Google Scholar 

  • Izumo, T., Montégut, C. B., Luo, J. J., Behera, S. K., Masson, S., & Yamagata, T. (2008). The role of the western Arabian Sea upwelling in Indian monsoon rainfall variability. Journal of Climate, 21, 5603–5623.

    Google Scholar 

  • Jiang, X., Li, T., & Wang, B. (2004). Structures and mechanisms of the northward propagation boreal summer intraseasonal oscillation. Journal of Climate, 17, 1022–1039.

    Google Scholar 

  • Joseph, P. V., & Raman, P. L. (1996). Existence of low level westerly jet stream over peninsular India during July. Indian Journal of Meteorology Hydrology and Geophysics, 7(1), 407–410.

    Google Scholar 

  • Kalnay, E., Kanamitsu, M., Kistler, R., et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77, 437–471.

    Google Scholar 

  • Kemball-Cook, S., Wang, B., & Fu, X. (2002). Simulation of the intraseasonal oscillation in the ECHAM-4 model: The impact of coupling with an ocean model. Journal of the Atmospheric Sciences, 59(9), 1433–1453.

    Google Scholar 

  • Kilpatrick, T., Schneider, N., & Qiu, B. (2016). Atmospheric response to a midlatitude SST front: Alongfront winds. Journal of the Atmospheric Sciences, 73(9), 3489–3509.

    Google Scholar 

  • Klingaman, N. P., Woolnough, S. J., Weller, H., & Slingo, J. M. (2011). The impact of finer-resolution air-sea coupling on the intraseasonal variability of Indian monsoon. Journal of Climate, 24, 2451–2468.

    Google Scholar 

  • Kumar, D., & Dimri, A. P. (2018). Regional climate projections for Northeast India: An appraisal from CORDEX South Asia experiment. Theoretical and Applied Climatology, 134(3–4), 1065–1081.

    Google Scholar 

  • Kumar, D., & Dimri, A. P. (2019). Sensitivity of convective and land surface parameterization in the simulation of contrasting monsoons over CORDEX-South Asia domain using RegCM-4.4.5.5. Theoretical and Applied Climatology. https://doi.org/10.1007/s00704-019-02976-9.

    Article  Google Scholar 

  • Kumar, A., Dwivedi, S., & Pandey, A. C. (2018). Quantifying predictability of sea ice around the Indian Antarctic stations using coupled ocean sea ice model with shelf ice. Polar Science, 18, 83–93.

    Google Scholar 

  • Large, W., McWilliams, J. C., & Doney, S. C. (1994). Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32(4), 363–403. https://doi.org/10.1029/94RG01872.

    Article  Google Scholar 

  • Large, W. G., & Pond, S. (1982). Sensible and latent heat flux measurements over the ocean. Journal of Physical Oceanography, 12(5), 464–482.

    Google Scholar 

  • Li, H., Kanamitsu, M., Hong, S. Y., Yoshimura, K., Cayan, D. R., & Misra, V. (2014). A high-resolution ocean-atmosphere coupled downscaling of the present climate over California. Climate Dynamics, 42, 701–714.

    Google Scholar 

  • Marshall, J., Adcroft, A., Hill, C., Perelman, L., & Heisey, C. (1997). A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. Journal of the Atmospheric Sciences, 102(C3), 5753–5766.

    Google Scholar 

  • Mishra, A. K., & Dwivedi, S. (2019). Assessment of convective parametrization schemes over the Indian subcontinent using a regional climate model. Theoretical and Applied Climatology, 137, 1747–1764.

    Google Scholar 

  • Mishra, A. K., Dwivedi, S., & Das, S. (2020). Role of Arabian Sea warming on the Indian summer monsoon rainfall in a regional climate model. International Journal of Climatology, 40, 2226–2238.

    Google Scholar 

  • Misra, V., Chan, S., Wu, R., & Chassignet, E. (2009). Air-sea interaction over the Atlantic warm pool in the NCEP CFS. Geophysical Research Letters. https://doi.org/10.1029/2009gl038737.

    Article  Google Scholar 

  • Miura, H., Satoh, M., Nasuno, T., Noda, A. T., & Oouchi, K. (2007). A Madden-Julian oscillation event realistically simulated by a global cloud-resolving model. Science, 318(5857), 1763–1765.

    Google Scholar 

  • Newman, M., Sardeshmukh, P. D., & Penland, C. (2009). How important is air–sea coupling in ENSO and MJO evolution? Journal of Climate, 22(11), 2958–2977.

    Google Scholar 

  • Oleson, K. W., Lawrence, D. M., Gordon, B., Flanner, M. G., Kluzek, E., Peter, J., Levis, S., Swenson, S. C., Thornton, E., Feddema, J., & Heald, C. L. (2010). Technical description of version 4.0 of the Community Land Model (CLM).

  • Parlitz, U. (1998). Nonlinear time-series analysis. In J. A. K. Uykens & J. Vandewalle (Eds.), Nonlinear modeling-advanced black-box techniques (pp. 209–239). London: Kluwer Academic Publishers.

    Google Scholar 

  • Rajendran, K., & Kitoh, A. (2006). Modulation of tropical intraseasonal oscillations by ocean–atmosphere coupling. Journal of Climate, 19(3), 366–391.

    Google Scholar 

  • Rayner, N., Parker, D. E., Horton, E., Folland, C., Alexander, L., Rowell, D., et al. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research Atmospheres, 108, D14. https://doi.org/10.1029/2002JD002670.

    Article  Google Scholar 

  • Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., & Wang, W. (2002). An improved in situ and satellite SST analysis for climate. Journal of Climate, 15(13), 1609–1625.

    Google Scholar 

  • Rosenstein, M. T., Collins, J. J., & De Luca, C. J. (1993). A practical method for calculating largest Lyapunov exponents from small data sets. Physica D Nonlinear Phenomena, 65, 117–134.

    Google Scholar 

  • Sahai, A. K., Grimm, A. M., Satyan, V., & Pant, G. B. (2003). Long-lead prediction of Indian summer monsoon rainfall from global SST evolution. Climate Dynamics, 20(7–8), 855–863.

    Google Scholar 

  • Samala, B. K., Nagaraju, C., Banerjee, S., Kaginalkar, A., & Dalvi, M. (2013). Study of the Indian summer monsoon using WRF-ROMS regional coupled model simulations. Atmospheric Science Letters, 14, 20–27.

    Google Scholar 

  • Sein, D. V., Mikolajewicz, U., Gröger, M., Fast, I., Cabos, W., Pinto, J. G., et al. (2015). Regionally coupled atmosphere-ocean-sea ice-marine biogeochemistry model ROM: 1. Description and validation. Journal of Advances in Modeling Earth Systems, 7, 268–304.

    Google Scholar 

  • Seo, H., Miller, A., & Norris, J. J. (2016). Eddy-wind interaction in the California current system: Dynamics and impacts. Journal of Physical Oceanography, 46, 439–459. https://doi.org/10.1175/JPO-D-15-0086.1.

    Article  Google Scholar 

  • Shukla, J. (1975). Effect of Arabian sea-surface temperature anomaly on Indian summer monsoon: A numerical experiment with the GFDL model. Journal of the Atmospheric Sciences, 32, 503–511.

    Google Scholar 

  • Sikka, D. R., & Gadgil, S. (1980). On the maximum cloud zone and the ITCZ over Indian, longitudes during the southwest monsoon. Monthly Weather Review, 108(11), 1840–1853.

    Google Scholar 

  • Sitz, L. E., Di Sante, F., Farneti, R., Fuentes-Franco, R., Coppola, E., Mariotti, L., et al. (2017). Description and evaluation of the Earth System Regional Climate Model (RegCM-ES). Journal of Advances in Modeling Earth Systems, 9(4), 1863–1886.

    Google Scholar 

  • Smith, W. H., & Sandwell, D. T. (1997). Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277(5334), 1956–1962.

    Google Scholar 

  • Srivastava, A., Dwivedi, S., & Mishra, A. K. (2016). Intercomparison of high-resolution Bay of Bengal circulation models forced with different winds. Marine Geodesy, 39(3–4), 271–289.

    Google Scholar 

  • Srivastava, A., Dwivedi, S., & Mishra, A. K. (2018). Investigating the role of air-sea forcing on the variability of hydrography, circulation, and mixed layer depth in the Arabian Sea and Bay of Bengal. Oceanologia, 60(2), 169–186.

    Google Scholar 

  • Torma, C., Giorgi, F., & Coppola, E. (2015). Added value of regional climate modeling over areas characterized by complex terrain Precipitation over the Alps. Journal of Geophysical Research Atmospheres, 120(9), 3957–3972.

    Google Scholar 

  • Trenberth, K. E., Branstator, G. W., Karoly, D., Kumar, A., Lau, N.-C., & Ropelewski, C. (1998). Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. Journal Geophysical Research, 103, 14291–14324.

    Google Scholar 

  • Turuncoglu, U. U., Giuliani, G., Elguindi, N., & Giorgi, F. (2013). Modelling the Caspian Sea and its catchment area using a coupled regional atmosphere-ocean model (RegCM4-ROMS): Model design and preliminary results. Geoscientific Model Development, 6, 283–299.

    Google Scholar 

  • Turuncoglu, U. U., & Sannino, G. (2017). Validation of newly designed regional earth system model (RegESM) for Mediterranean Basin. Climate Dynamics, 48(9–10), 2919–2947.

    Google Scholar 

  • Unnikrishnan, C. K., Rajeevan, M., Rao, S. V. B., & Kumar, M. (2013). Development of a high resolution land surface dataset for the South Asian monsoon region. Current Science, 105, 1235–1246.

    Google Scholar 

  • Uppala, S. M., Kallberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V. D., Fiorino, M., et al. (2005). The ERA-40 re-analysis. Quarterly Journal Royal Meteorological Society, 131(612), 2961–3012.

    Google Scholar 

  • Waliser, D. E., Lau, K. M., Stern, W., & Jones, C. (2003). Potential predictability of the Madden–Julian oscillation. Bulletin of the American Meteorological Society, 84, 33–50.

    Google Scholar 

  • Walton, D. B. (2012). The impact of air-sea coupling on simulating SST variability in the California current system. In Atmospheric sciences MS Thesis, University of California, Los Angeles (pp. 1–25). https://escholarship.org/uc/item/7pg1t8zr.

  • Wang, B., Ding, Q., Fu, X., Kang, I. S., Jin, K., Shukla, J., et al. (2005). Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophysical Reseach Letters, 32, L15711. https://doi.org/10.1029/2005GL022734.

    Article  Google Scholar 

  • Xing, Y., Hünicke, B., Tim, N., & Zorita, E. (2015). The relationship between Arabian Sea upwelling and Indian monsoon revisited. Ocean Science Discussions. https://doi.org/10.5194/osd-12-2683-2015.

    Article  Google Scholar 

  • Xu, M., & Xu, H. (2015). Atmospheric responses to Kuroshio SST front in the East China Sea under different prevailing winds in winter and spring. Journal of Climate, 28, 3191–3211. https://doi.org/10.1175/JCLI-D-13-00675.1.

    Article  Google Scholar 

  • Zeng, X., Zhao, M., & Dickinson, R. E. (1998). Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. Journal of Climate, 1998(11), 2628–2644.

    Google Scholar 

  • Zheng, Y., Waliser, D. E., Stern, W., & Jones, C. (2004). The role of coupled sea surface temperatures in the simulation of the tropical intraseasonal oscillation. Journal of Climate, 17, 4109–4134.

    Google Scholar 

  • Zou, L., & Zhou, T. (2013). Can a regional ocean atmosphere coupled model improve the simulation of the interannual variability of the western North Pacific summer monsoon? Journal of Climate, 26, 2353–2367.

    Google Scholar 

  • Zou, L., Zhou, T., & Peng, D. (2016). Dynamical downscaling of historical climate over CORDEX East Asia domain: A comparison of regional ocean-atmosphere coupled model to stand-alone RCM simulations. Journal of Geophysical Research Atmospheres, 121(4), 1442–1458.

    Google Scholar 

  • Zuo, H., Balmaseda, M. A., & Mogensen, K. (2017). The new eddy-permitting ORAP5 ocean reanalysis: description, evaluation and uncertainties in climate signals. Climate Dynamics, 49(3), 791–811.

    Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers and the Editor for their constructive comments and suggestions, which have helped us improve the overall quality of the paper. AKM is thankful to the DST for providing the junior research fellowship. SD is thankful to the DST, Govt. of India, for financial assistance in the form of a research project and the University of Allahabad for granting the sabbatical leave. The authors are thankful to the ICTP for providing the regional climate model setup. Thanks are also due to the respective agencies of the IMD, HadISST, and ECMWF ERA-Interim data products for making available these data sets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Kumar Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A.K., Dwivedi, S. & Di Sante, F. Performance of the RegCM-MITgcm Coupled Regional Model in Simulating the Indian Summer Monsoon Rainfall. Pure Appl. Geophys. 178, 603–617 (2021). https://doi.org/10.1007/s00024-020-02648-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02648-0

Keywords

Navigation