Skip to main content
Log in

Minimum Weight Flat Antichains of Subsets

  • Published:
Order Aims and scope Submit manuscript

Abstract

Building on classical theorems of Sperner and Kruskal-Katona, we investigate antichains \(\mathcal {F}\) in the Boolean lattice Bn of all subsets of \([n]:=\{1,2,\dots ,n\}\), where \(\mathcal {F}\) is flat, meaning that it contains sets of at most two consecutive sizes, say \(\mathcal {F}=\mathcal {A}\cup {\mathscr{B}}\), where \(\mathcal {A}\) contains only k-subsets, while \({\mathscr{B}}\) contains only (k − 1)-subsets. Moreover, we assume \(\mathcal {A}\) consists of the first m k-subsets in squashed (colexicographic) order, while \({\mathscr{B}}\) consists of all (k − 1)-subsets not contained in the subsets in \(\mathcal {A}\). Given reals α, β > 0, we say the weight of \(\mathcal {F}\) is \(\alpha \cdot |\mathcal {A}|+\beta \cdot |{\mathscr{B}}|\). We characterize the minimum weight antichains \(\mathcal {F}\) for any given n,k,α,β, and we do the same when in addition \(\mathcal {F}\) is a maximal antichain. We can then derive asymptotic results on both the minimum size and the minimum Lubell function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, I.: Combinatorics of finite sets. Courier Dover Publications (2002)

  2. Bollobás, B.: On generalized graphs. Acta. Math. Acad. Sci. Hung. 16, 447–452 (1965)

    Article  Google Scholar 

  3. Clements, G.F.: The minimal number of basic elements in a multiset antichain. J. Combin. Theory Ser. A 25, 153–162 (1978)

    Article  MathSciNet  Google Scholar 

  4. Engel, K.: Sperner Theory. Cambridge University Press (1997)

  5. Frankl, P., Matsumoto, M., Ruzsa, I. Z., Tokushige, N.: Minimum shadows in uniform hypergraphs and a generalization of the Takagi function. J. Combinatorial Th. (ser. A) 69, 125–148 (1995)

    Article  MathSciNet  Google Scholar 

  6. Grüttmüller, M., Hartmann, S., Kalinowski, T., Leck, U., Roberts, I.T.: Maximal flat antichains of minimum weight. Electron. J. Combin. 16(1), #R69 (2009)

    Article  MathSciNet  Google Scholar 

  7. Griggs, J.R., Li, W.-T., Lu, L.: Diamond-free families. J. Combinatorial Theory Ser. A 119, 310–322 (2012)

    Article  MathSciNet  Google Scholar 

  8. Griggs, J.R., Li, W.-T.: Progress on poset-free families of subsets, recent trends in combinatorics. In: Beveridge, A., Griggs, J.R., Hogben, L., Musiker, G., Tetali, P. (eds.) The IMA volumes in mathematics and its applications, vol. 159, pp 317–338. Springer, Berlin (2016)

  9. Kalinowski, T., Leck, U., Roberts, I.T.: Maximal antichains of minimum size. Electron. J. Combin. 20(2), #P3 (2013)

    Article  MathSciNet  Google Scholar 

  10. Katona, G.O.H.: A theorem of finite sets. In: Erdös, P., Katona, G. (eds.) Theory of graphs, pp 187–207. Akadémiai Kiadó and Academic Press, New York (1968)

  11. Kisvölcsey, Á.: Flattening antichains. Combinatorica 308(11), 2247–2260 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Kruskal, J. B.: The optimal number of simplices in a complex. In: Bellman, R. (ed.) Mathemaical Optimization Techniques, pp 251–278. Univ. of California Press, Berkeley–Los Angeles (1963)

  13. Lieby, P.: Extremal Problems in Finite Sets. PhD Thesis, Northern Territory University, Darwin (Australia) (1999)

  14. Lieby, P.: Antichains on three levels. Electron. J. Combin. 11, #R50 (2004)

    Article  MathSciNet  Google Scholar 

  15. Lubell, D.: A short proof of Sperner’s lemma. J. Combin. Theory 1, 299 (1966)

    Article  MathSciNet  Google Scholar 

  16. Meshalkin, L.D.: Generalization of Sperner’s Theorem on the number of subsets of a finite set. Teor. Verojatnost. i Primenen 8, 219–220 (1963). English transl.: Theor. Probab. Appl. 8 (1963), 203–204

    MathSciNet  MATH  Google Scholar 

  17. Sperner, E.: Ein Satz über Untermengen einer endlichen Menge. Math. Z 27, 544–548 (1928)

    Article  MathSciNet  Google Scholar 

  18. Topley, K.: Computationally efficient bounds for the sum of Catalan numbers. arXiv:1601.04223v2 [math.CO] (2016)

  19. Yamamoto, K.: Logarithmic order of free distributive lattices. J. Math. Soc. Japan 6, 343–353 (1954)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerrold R. Griggs.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research supported in part by a grant from the Simons Foundation (#282896 to Jerrold Griggs) and by a long-term visiting position at the IMA, University of Minnesota.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Griggs, J.R., Hartmann, S., Kalinowski, T. et al. Minimum Weight Flat Antichains of Subsets. Order 38, 441–453 (2021). https://doi.org/10.1007/s11083-021-09550-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-021-09550-x

Keywords

Navigation