Skip to main content
Log in

Texture Development During Cold Rolling of a β-Ti Alloy: Experiments and Simulations

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Microstructure evolution and texture development during cold rolling of a Ti15333 alloy were systematically investigated in the present work. Texture was simulated using mean-field [Visco-Plastic Self-Consistent (VPSC) and Taylor] models. Evolution of crystallographic texture was also simulated using the Visco-Plastic Fast Fourier Transform (VPFFT) model. The as-received samples (in the hot-forged and hot-rolled condition) were cold rolled unidirectionally up to 20, 40, 60 and 80 pct thickness reductions. Increase in the cold-rolling reduction resulted in changes in the crystallographic texture as well as grain morphology. The initial hot-rolled sample consisted of in-grain shear bands that were aligned approximately ± 35 to 40 ° with respect to the sample rolling direction. Shear band density gradually increased with the increase in cold-rolling reduction, and these bands usually represent narrow zones of intense strain. α (RD//〈110〉) and γ (ND//〈111〉) fibers were observed in all the cold-rolled samples. The volume fraction of both these fibers was found to be highest for the 80 pct deformed sample. For mean-field simulations, the normalized difference of the texture index (normalized TIdiff) was found to be a good criterion to represent the match between the simulated and experimental texture. The affine model (VPSC) was found to give a good match with the experimental texture compared to the Taylor models. The γ-fiber and α-fiber were always overestimated in mean-field VPSC simulations. Extensive shear band formation could be the possible reason for mismatch between the simulated and experimental texture. For VPFFT simulations, the general texture evolution involved the intensification of the γ-fiber and α-fiber texture. Simulated texture was reasonably well predicted quantitatively with VPFFT, analyzed based on the volume fraction of the different texture fibers/components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Lütjering and J.C. Williams: Titanium, 2nd edn., Springer-Verlag Berlin Heidelberg, Hamburg, 2007.

    Google Scholar 

  2. I. Weiss and S.L. Semiatin: Mater. Sci. Eng. A, 1998, vol. 243, pp. 46–65.

    Article  Google Scholar 

  3. R.R. Boyer: Mater. Sci. Eng. A, 1996, vol. 213, pp. 103–14.

    Article  Google Scholar 

  4. A. Gupta, R.K. Khatirkar, A. Kumar, and M.S. Parihar: J. Mater. Res., 2018, vol. 33, pp. 946–57.

    Article  CAS  Google Scholar 

  5. O.P. Karasevskaya, O.M. Ivasishin, S.L. Semiatin, and Y. V. Matviychuk: Mater. Sci. Eng. A, 2003, vol. 354, pp. 121–32.

    Article  Google Scholar 

  6. A. Gupta, R.K. Khatirkar, T. Dandekar, J.S. Jha, and S. Mishra: J. Mater. Res., 2019, vol. 34, pp. 1–11.

    Article  Google Scholar 

  7. R. Khatirkar, B. Vadavadagi, S.K. Shekhawat, A. Haldar, and I. Samajdar: ISIJ Int., 2012, vol. 52, pp. 884–93.

    Article  CAS  Google Scholar 

  8. S. Suwas and R.K. Ray: Crystallographic Texture of Materials, Springers, Manchester, UK, 2014.

    Book  Google Scholar 

  9. R. Khatirkar, L. Kestens, R. Petrov, and I. Samajdar: ISIJ Int., 2009, vol. 49, pp. 78–85.

    Article  CAS  Google Scholar 

  10. G. Alireza, P.D. Hodgson, and M.R. Barnett: Key Eng. Mater., 2013, vol. 551, pp. 210–16.

    Article  Google Scholar 

  11. N.P. Gurao, A. Ali, and S. Suwas: Mater. Sci. Eng. A, 2009, vol. 504, pp. 24–35.

    Article  Google Scholar 

  12. H. Inoue, S. Fukushima, and N. Inakazu: Mater. Trans., 1992, vol. 33, pp. 129–37.

    Article  CAS  Google Scholar 

  13. B.K. Sokolov, V. V. Gubernatorov, I. V. Gervasyeva, A.K. Sbitnev, and L.R. Vladimirov: Textures Microstruct., 1999, vol. 32, pp. 21–39.

    Article  CAS  Google Scholar 

  14. W.B. Lee and K.C. Chan: Acta Metall. Mater., 1991, vol. 39, pp. 411–7.

    Article  CAS  Google Scholar 

  15. I.L. Dillamore, J.G. Roberts, and A.C. Bush: Met. Sci., 1979, vol. 13, pp. 73–7.

    Article  CAS  Google Scholar 

  16. M. Hatherly and F.J. Humphreys: Recrystallization and Related Annealing Phenomena, Pergamon: Elsevier, 2012.

    Google Scholar 

  17. K. Murakami, M. Sugiyama, and K. Ushioda: IOP Conf. Ser. Mater. Sci. Eng., 2015, 89: 89.

    Article  Google Scholar 

  18. P. Bate: Philos. Trans. R. Soc. Lond. Ser. A 1999, vol. 357, pp. 1589– 1601.

    Article  CAS  Google Scholar 

  19. P.V. Houtte: Acta Metall., 1978, vol. 26, pp. 591–604.

    Article  Google Scholar 

  20. A. Molinari, G.R. Canova, and S. Ahzi: Acta Metall., 1987, vol. 35, pp. 2983–94.

    Article  CAS  Google Scholar 

  21. R.A. Lebensohn and C.N. Tomé: Acta Metall. Mater., 1993, vol. 41, pp. 2611–24.

    Article  CAS  Google Scholar 

  22. P. Van Houtte: Mater. Sci. Eng., 1982, vol. 55, pp. 69–77.

    Article  Google Scholar 

  23. F. Wagner, G. Canova, P. Van Houtte, and A. Molinari: Textures Microstruct., 1991, vol. 14, pp. 1135–40.

    Article  Google Scholar 

  24. D. Raabe: Phys. Status Solidi, 1995, vol. 149, pp. 575–81.

    Article  CAS  Google Scholar 

  25. S. M’Guil, W. Wen, S. Ahzi, and J.J. Gracio: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5840–53.

    Article  Google Scholar 

  26. B. Hutchinson: Philos. Trans. R. Soc. London. Ser. A, 1999, vol. 357, pp. 1471–85.

    Article  CAS  Google Scholar 

  27. D. Raabe: Mater. Sci. Technol., 1995, vol. 11, pp. 455–60.

    Article  CAS  Google Scholar 

  28. F. Royer, A. Nadari, F. Yala, and P. Lipinski: Textures Microstruct., 1991, vol. 14–18, pp. 1129–34.

    Article  Google Scholar 

  29. C. Adam, U. Lin, H. Thomas, and A.D. Rollet: Integr. Mater. Manuf. Innov., 2014, vol. 3, pp. 1–19.

    Article  Google Scholar 

  30. H. Moulinec and P. Suquet: Comput. Methods Appl. Mech. Eng., 1998, vol. 157, pp. 69–94.

    Article  Google Scholar 

  31. R.A. Lebensohn, M. Zecevic, M. Knezevic, and R.J. McCabe: Acta Mater., 2016, vol. 104, pp. 228–36.

    Article  CAS  Google Scholar 

  32. R.A. Lebensohn, Y. Liu, and P.P. Castañeda: Acta Mater., 2004, vol. 52, pp. 5347–61.

    Article  CAS  Google Scholar 

  33. R.A. Lebensohn: Acta Mater., 2001, vol. 49, pp. 2723–37.

    Article  CAS  Google Scholar 

  34. C. Paramatmuni and A.K. Kanjarla: Int. J. Plast., 2019, vol. 113, pp. 269–90.

    Article  CAS  Google Scholar 

  35. S. Sinha, A. Ghosh, and N.P. Gurao: Philos. Mag., 2016, vol. 96, pp. 1485–4508.

    Article  CAS  Google Scholar 

  36. RK Sabat, MVSSDSS Pavan, DS Aakash, M Kumar, SK Sahoo (2018) Philos. Mag. 98, 2562–81.

    Article  CAS  Google Scholar 

  37. A.S.M. Handbook: Metallography and Microstructures, ASM International, Materials Park, 2004.

    Google Scholar 

  38. OIM: Anal. Version 7.2. User Manual, TexSEM Lab. Inc., Draper, 2013.

  39. P. Van Houtte: The ‘MTM-FHM’ Software System, Version 2 Manual .

  40. S. Ghosh, S. Keshavarz, and G. Weber: in Inelastic Behavior of Materials and Structures Under Monotonic and Cyclic Loading, H. Altenbach and M. Brünig, eds., Springer International Publishing, Cham, 2015, pp. 67–96.

  41. ASTM: ASTM E112-10, 2012, pp. 1–27.

  42. A. Gupta, R.K. Khatirkar, A. Kumar, K. Thool, N. Bibhanshu, and S. Suwas: Mater. Charact., 2019, vol. 156, p. 109884.

    Article  CAS  Google Scholar 

  43. V.D. Mote, Y. Purushotham, and B.N. Dole: J. Theor. Appl. Phys., 2012, 6: pp. 2–9.

    Article  Google Scholar 

  44. C.G. Oertel, I. Huensche, W. Skrotzki, W. Knabl, A. Lorich, and J. Resch: Mater. Sci. Eng. A, 2008, vol. 483–484, pp. 79–83.

    Article  Google Scholar 

  45. A. Bhattacharyya, M. Knezevic, and M. Abouaf: Metall. Mater. Trans. A, 2014, vol. 46A, pp. 1085–96.

    Google Scholar 

  46. I.L. Dillamore, C.J.E. Smith, and T.W. Watson: Met. Sci. J., 1967, vol. 1, pp. 49–54.

    Article  CAS  Google Scholar 

  47. R.K. Ray, J.J. Jonas, and R.E. Hook: Int. Mater. Rev., 1994, vol. 39, pp. 129–72.

    Article  CAS  Google Scholar 

  48. W.B. Hutchinson: Int. Met. Rev., 1984, vol. 29, pp. 25–42.

    Article  CAS  Google Scholar 

  49. P.P. Date, S.K. Yerra, H. V Vankudre, and I. Samajdar: J. Eng. Mater. Technol., 2018, vol. 126, pp. 53–61.

    Google Scholar 

  50. B. Verlinden, J. Driver, I. Samajdar, and R.D. Doherty: Thermo-Mechanical Processing of Metallic Materials, Elsevier, New York, NY, 2007.

    Google Scholar 

  51. W.G. Guo: Key Eng. Mater., 2007, vol. 340–341, pp. 823–8.

    Article  Google Scholar 

  52. .R. Barnett: ISIJ Int., 1998, vol. 38, pp. 78–85.

    Article  CAS  Google Scholar 

  53. N.P. Gurao and S. Suwas: Mater. Lett., 2013, vol. 99, pp. 81–5.

    Article  CAS  Google Scholar 

  54. S.N. Nasser, W.G. Guo, and J.Y. Cheng: Acta matter, 1999, vol. 47, pp. 3705–20.

    Article  Google Scholar 

  55. S.N. Nasser, W.G. Guo, V.F. Nesterenko, S.S. Indrakanti, and Y.B. Gu: Mech. Mater., 2001, vol. 33, pp. 425–39.

    Article  Google Scholar 

  56. S. Cicalè, I. Samajdar, B. Verlinden, G. Abbruzzese, and P. Van Houtte: ISIJ Int., 2002, vol. 42, pp. 770–8.

    Article  Google Scholar 

  57. M.R. Barnett and J.J. Jonas: ISIJ Int., 1997, vol. 37, pp. 706–14.

    Article  CAS  Google Scholar 

  58. M.R. Barnett and L. Kestens: ISIJ Int., 1999, vol. 39, pp. 923–9.

    Article  CAS  Google Scholar 

  59. A. Kumar, R.K. Khatirkar, D. Chalapathi, N. Bibhanshu, and S. Suwas: Philos. Mag., 2017, vol. 97, pp. 1939–62.

    Article  CAS  Google Scholar 

  60. H. Inagaki: ISIJ Int., 1994, vol. 34, pp. 313–21.

    Article  CAS  Google Scholar 

  61. V. Tari, A.D. Rollett, H. El Kadiri, H. Beladi, A.L. Oppedal, and R.L. King: Model. Simul. Mater. Sci. Eng., 2015, vol. 23, pp. 1–23.

    Article  CAS  Google Scholar 

  62. R. Pokharel, J. Lind, A.K. Kanjarla, R.A. Lebensohn, S.F. Li, P. Kenesei, R.M. Suter, and A.D. Rollett: Annu. Rev. Condens. Matter Phys., 2014, vol. 5, pp. 317–46.

    Article  CAS  Google Scholar 

  63. O. Diard, S. Leclercq, G. Rousselier, and G. Cailletaud: Int. J. Plast., 2005, vol. 21, pp. 691–722.

    Article  CAS  Google Scholar 

  64. P. Van Houtte, J. Gawad, P. Eyckens, B. Van Bael, G. Samaey, and D. Roose: JOM, 2011, vol. 63, pp. 37–43.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Director, VNIT Nagpur, for providing the necessary facilities and constant encouragement to publish this paper. Thanks are also due to Prof. I. Samajdar, Convener, ‘National Facility of Texture & OIM’ (a DST-IRPHA facility), IIT Bombay, for EBSD and bulk texture measurements. One of the authors, RKK, wishes to acknowledge the Science and Engineering Research Board (SERB) for financial assistance to carry out this work (grant no. EEQ/2016/000408). The authors also thank Dr. Anand Kanjarla (IIT Madras) for providing facilities for VPFFT simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kisni Khatirkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 8, 2020; accepted November 24, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Khatirkar, R.K., Kumar, A. et al. Texture Development During Cold Rolling of a β-Ti Alloy: Experiments and Simulations. Metall Mater Trans A 52, 1031–1043 (2021). https://doi.org/10.1007/s11661-020-06117-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06117-0

Navigation