Skip to main content
Log in

Mechanics of soft polymeric materials using a fractal viscoelastic model

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

Soft materials are known for their plethora of biomedical applications, intricate structure–property correlation and nonlinear mechanical response. Multiple length–time scale phenomena and hierarchical structure results in their nonlinearity. Phenomenological and continuum mechanical models have been developed to predict their mechanics, which have mostly been very material-specific with inability to predict the mechanics of different types of soft materials simultaneously. This shortcoming has been addressed in the present work, wherein a generic nonlinear viscoelastic model has been proposed to predict the mechanical response of hydrogels, sponges, and xerogels. A fractal derivative viscoelastic model is proposed considering a fractal Maxwell model in parallel with a nonlinear spring. In particular, this model is chosen to qualitatively mimic the material nonlinearity inherent in soft materials. The fractal dashpot in combination with the nonlinear spring accounts for the power law time-dependent rheology of generic soft materials. These two different aspects in the form of nonlinear stiffness and non-Newtonian rheology account for mechanics of most soft materials. The present model is shown to fit well the existing literature results for mechanical response of a multitude of soft material classes with different test conditions and loading rates, which is one of the salient features of the model, apart from its simplistic mathematical framework. Further, a parametric study is reported on the mechanics of nanocellulose loaded poly(vinyl alcohol) xerogel. The model predictions are observed to be in conjunction with the experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abuzeid, O.M.: A linear viscoelastic creep-contact model of a flat fractal surface: Kelvin-Voigt medium. Ind. Lubr. Tribol. 56(6), 334–340 (2004)

    Article  Google Scholar 

  • Abuzeid, O.M., Eberhard, P.: Linear viscoelastic creep model for the contact of nominal flat surfaces based on fractal geometry: standard linear solid (SLS) material. J. Tribol. 129(3), 461–466 (2007)

    Article  Google Scholar 

  • Aegerter, M.A., Leventis, N., Koebel, M.M.: Aerogels Handbook. Springer, Berlin (2011)

    Book  Google Scholar 

  • Ahearne, M., Yang, Y., El Haj, A.J., Then, K.Y., Liu, K.-K.: Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications. J. R. Soc. Interface 2(5), 455–463 (2005)

    Article  Google Scholar 

  • Aime, S., Cipelletti, L., Ramos, L.: Power law viscoelasticity of a fractal colloidal gel. J. Rheol. 62, 1429 (2018)

    Article  Google Scholar 

  • Annarasa, V., Popov, A.A., De Focatiis, D.S.A.: A phenomenological constitutive model for the viscoelastic deformation of elastomers. Mech. Time-Depend. Mater. (2020). https://doi.org/10.1007/s11043-020-09452-2

    Article  Google Scholar 

  • Babu, A.N.S., Rajan, A., Pramanik, R., Arunachalakasi, A.: A thermodynamically-consistent phenomenological viscoplastic model for hydrogels. Mater. Res. Express 6(8), 085418 (2019). https://doi.org/10.1088/2053-1591/ab2a49

    Article  Google Scholar 

  • Bacca, M., McMeeking, R.M.: A viscoelastic constitutive law for hydrogels. Meccanica 52(14), 3345–3355 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Budday, S., Sommer, G., Birkl, C., Langkammer, C., Haybaeck, J., Kohnert, J., Bauer, M., Paulsen, F., Steinmann, P., Kuhl, E., et al.: Mechanical characterization of human brain tissue. Acta Biomater. 48, 319–340 (2017)

    Article  Google Scholar 

  • Cai, W., Chen, W., Xu, W.: Characterizing the creep of viscoelastic materials by fractal derivative models. Int. J. Non-Linear Mech. 87, 58–63 (2016)

    Article  Google Scholar 

  • Chaimoon, K., Chindaprasirt, P.: An anisotropic hyperelastic model with an application to soft tissues. Eur. J. Mech. A, Solids 78, 103845 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Dai, L., Tian, C., Xiao, R.: Modeling the thermo-mechanical behaviour and constrained recovery performance of cold-programmed amorphous shape-memory polymers. Int. J. Plast. 127, 102654 (2020)

    Article  Google Scholar 

  • Drury, J.L., Mooney, D.J.: Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24), 4337–4351 (2003)

    Article  Google Scholar 

  • Fakhouri S., Hutchens, S.B., Crosby, A.J.: Puncture mechanics of soft solids. Soft Matter 11(23), 4723–4730 (2015)

    Article  Google Scholar 

  • Ficarella, E., Lamberti, L., Papi, M., De Spirito, M., Pappalettere, C.: Viscohyperelastic calibration in mechanical characterization of soft matter. In: Mechanics of Biological Systems and Materials, vol. 6, pp. 33–37. Springer, Berlin (2017)

    Google Scholar 

  • Garcia-Gonzalez, D., Jérusalem, A., Garzon-Hernandez, S., Zaera, R., Arias, A.: A continuum mechanics constitutive framework for transverse isotropic soft tissues. J. Mech. Phys. Solids 112, 209–224 (2018)

    Article  MathSciNet  Google Scholar 

  • Gong, X., Wang, Y., Tian, Z., Zheng, X., Chen, L.: Controlled production of spruce cellulose gels using an environmentally “green” system. Cellulose 21(3), 1667–1678 (2014)

    Article  Google Scholar 

  • Gudimetla, M.R., Doghri, I.: A finite strain thermodynamically-based constitutive framework coupling viscoelasticity and viscoplasticity with application to glassy polymers. Int. J. Plast. 98, 197–216 (2017)

    Article  Google Scholar 

  • Han, L., Xu, J., Lu, X., Gan, D., Wang, Z., Wang, K., Zhang, H., Yuan, H., Weng, J.: Biohybrid methacrylated gelatin/polyacrylamide hydrogels for cartilage repair. J. Phys. Chem. B 5(4), 731–741 (2017)

    Google Scholar 

  • He, G., Liu, Y., Deng, X., Fan, L.: Constitutive modeling of viscoelastic–viscoplastic behavior of short fiber reinforced polymers coupled with anisotropic damage and moisture effects. Acta Mech. Sin. 35(3), 495–506 (2019)

    Article  MathSciNet  Google Scholar 

  • Hei, X., Chen, W., Pang, G., Xiao, R., Zhang, C.: A new visco-elasto-plastic model via time-space fractional derivative. Mech. Time-Depend. Mater. 22, 129–141 (2018)

    Article  Google Scholar 

  • Heymans, N., Bauwens, J.C.: Fractal rheological models and fractional differential equations for viscoelastic behaviour. Rheol. Acta 33, 210–219 (1994)

    Article  Google Scholar 

  • Hu, Y., Suo, Z.: Viscoelasticity and poroelasticity in elastomeric gels. Acta Mech. Solida Sin. 25(5), 441–458 (2012)

    Article  Google Scholar 

  • Johnson, B., Bauer, J.M., Niedermaier, D.J., Crone, W.C., Beebe, D.J.: Experimental techniques for mechanical characterization of hydrogels at the microscale. Exp. Mech. 44(1), 21 (2004)

    Article  Google Scholar 

  • Karimi, A., Navidbakhsh, M., Beigzadeh, B.: A visco-hyperelastic constitutive approach for modeling polyvinyl alcohol sponge. Tissue Cell 46(1), 97–102 (2014)

    Article  Google Scholar 

  • Katti, A., Shimpi, N., Roy, S., Lu, H., Fabrizio, E.F., Dass, A., Capadona, L.A., Leventis, N.: Chemical, physical, and mechanical characterization of isocyanate cross-linked amine-modified silica aerogels. Chem. Mater. 18(2), 285–296 (2006)

    Article  Google Scholar 

  • Kelly, J.F., McGough, R.J.: Fractal ladder models and power law wave equations. J. Acoust. Soc. Am. 126(4), 2072–2081 (2009)

    Article  Google Scholar 

  • Korchagin, V., Dolbow, J., Stepp, D.: A theory of amorphous viscoelastic solids undergoing finite deformations with application to hydrogels. Int. J. Solids Struct. 44(11–12), 3973–3997 (2007)

    Article  MATH  Google Scholar 

  • Li, W., Wang, D., Yang, W., Song, Y.: Compressive mechanical properties and microstructure of PVA–HA hydrogels for cartilage repair. RSC Adv. 6(24), 20166–20172 (2016)

    Article  Google Scholar 

  • Lin, J., Zheng, S., Xiao, R., Yin, J., Wu, Z., Zheng, Q., Qian, J.: Constitutive behaviours of tough physical hydrogels with dynamic metal-coordinated bonds. J. Mech. Phys. Solids 139, 103935 (2020)

    Article  Google Scholar 

  • Liu, K., Ovaert, T.C.: Poro-viscoelastic constitutive modeling of unconfined creep of hydrogels using finite element analysis with integrated optimization method. J. Mech. Behav. Biomed. Mater. 4(3), 440–450 (2011)

    Article  Google Scholar 

  • Lu, H., Wang, X., Shi, X., Yu, K., Fu, Y.Q.: A phenomenological model for dynamic response of double-network hydrogel composite undergoing transient transition. Composites, Part B, Eng. 151, 148–153 (2018)

    Article  Google Scholar 

  • Mainardi, F., Masina, E., Spada, G.: A generalization of the Becker model in linear viscoelasticity: Creep, relaxation and internal friction. Mech. Time-Depend. Mater. 23(3), 283–294 (2019)

    Article  Google Scholar 

  • Murali Krishnan, J., Deshpande, A.P., Sunil Kumar, P.B.: Rheology of Complex Fluids. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  • Ould Eleya, M.M., Ko, S., Gunasekaran, S.: Scaling and fractal analysis of viscoelastic properties of heat-induced protein gels. Food Hydrocoll. 18, 315–323 (2004)

    Article  Google Scholar 

  • Panda, D., Konar, S., Bajpai, S.K., Arockiarajan, A.: Synthesis and viscoelastic characterization of microstructurally aligned silk fibroin sponges. J. Mech. Behav. Biomed. Mater. 71, 362–371 (2017)

    Article  Google Scholar 

  • Panda, D., Konar, S., Bajpai, S.K., Arockiarajan, A.: Thermodynamically-consistent constitutive modeling of aligned silk fibroin sponges: theory and application to uniaxial compression. Int. J. Solids Struct. 138, 144–154 (2018)

    Article  Google Scholar 

  • Pazos, V., Mongrain, R., Tardif, J.C.: Polyvinyl alcohol cryogel: optimizing the parameters of cryogenic treatment using hyperelastic models. J. Mech. Behav. Biomed. Mater. 2(5), 542–549 (2009)

    Article  Google Scholar 

  • Pramanik, R., Arockiarajan, A.: Influence of mechanical compressive loads on microstructurally aligned PVA xerogels. Mater. Lett. 236, 222–224 (2019)

    Article  Google Scholar 

  • Pramanik, R., Ganivada, B., Ram, F., Shanmuganathan, K., Arockiarajan, A.: Influence of nanocellulose on mechanics and morphology of polyvinyl alcohol xerogels. J. Mech. Behav. Biomed. Mater. 90, 275–283 (2019)

    Article  Google Scholar 

  • Pramanik, R., Narayanan, A., Rajan, A., Konar, S., Arockiarajan, A.: Transversely isotropic freeze-dried PVA hydrogels: theoretical modelling and experimental characterization. Int. J. Eng. Sci. 144, 103144 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Rajagopal, K.R.: Non-linear elastic bodies exhibiting limiting small strain. Math. Mech. Solids 16(1), 122–139 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Rajagopal, K.R., Srinivasa, A.R.: A Gibbs-potential-based formulation for obtaining the response functions for a class of viscoelastic materials. Proc. R. Soc. A, Math. Phys. Eng. Sci. 467(2125), 39–58 (2011)

    MathSciNet  MATH  Google Scholar 

  • Rajan, A., Pramanik, R., Narayanan, A., Arockiarajan, A.: Mechanics of viscoelastic buckling in slender hydrogels. Mater. Res. Express 6(5), 055320 (2019)

    Article  Google Scholar 

  • Rich, S.I., Wood, R.J., Majidi, C.: Untethered soft robotics. Nat. Electron. 1(2), 102–112 (2018)

    Article  Google Scholar 

  • Sandolo, C., Coviello, T., Matricardi, P., Alhaique, F.: Characterization of polysaccharide hydrogels for modified drug delivery. Eur. Biophys. J. 36(7), 693–700 (2007)

    Article  Google Scholar 

  • Sanginario, V., Ginebra, M.P., Tanner, K.E., Planell, J.A., Ambrosio, L.: Biodegradable and semi-biodegradable composite hydrogels as bone substitutes: morphology and mechanical characterization. J. Mater. Sci., Mater. Med. 17(5), 447–454 (2006)

    Article  Google Scholar 

  • Serra-Aguila, A., Puigoriol-Forcada, J.M., Reyes, G., Menacho, J.: Viscoelastic models revisited: characteristics and interconversion formulas for generalized Kelvin–Voigt and Maxwell models. Acta Mech. Sin. 35(6), 1191–1209 (2019)

    Article  MathSciNet  Google Scholar 

  • Siegel, R.A., Gu, Y., Lei, M., Baldi, A., Nuxoll, E.E., Ziaie, B.: Hard and soft micro-and nanofabrication: an integrated approach to hydrogel-based biosensing and drug delivery. J. Control. Release 141(3), 303–313 (2010)

    Article  Google Scholar 

  • Sun, Y., Chen, C.: Fractional order creep model for coral sand. Mech. Time-Depend. Mater. 23(4), 465–476 (2019)

    Article  Google Scholar 

  • Suo, Z.: Mechanics of stretchable electronics and soft machines. Mater. Res. Soc. Bull. 37(3), 218–225 (2012)

    Article  Google Scholar 

  • Tibbitt, M.W., Anseth, K.S.: Hydrogels as extracellular matrix mimics for 3d cell culture. Biotechnol. Bioeng. 103(4), 655–663 (2009)

    Article  Google Scholar 

  • Toh, S.W., Loh, X.J.: Advances in hydrogel delivery systems for tissue regeneration. Mater. Sci. Eng. C 45, 690–697 (2014)

    Article  Google Scholar 

  • Tokarev, I., Minko, S.: Stimuli-responsive porous hydrogels at interfaces for molecular filtration, separation, controlled release, and gating in capsules and membranes. Adv. Mater. 22(31), 3446–3462 (2010)

    Article  Google Scholar 

  • Vemaganti, K., Madireddy, S., Kedari, S.: On the inference of viscoelastic constants from stress relaxation experiments. Mech. Time-Depend. Mater. 24(1), 1–24 (2020)

    Article  Google Scholar 

  • Volokh, K.: Mechanics of Soft Materials. Springer, Berlin (2016)

    Google Scholar 

  • Wang, Y., Maurel, G., Couty, M., Detcheverry, F., Merabia, S.: Implicit medium model for fractal aggregate polymer nanocomposites: linear viscoelastic properties. Macromolecules 52(5), 2021–2032 (2019)

    Article  Google Scholar 

  • Wineman, A.S., Rajagopal, K.R.: Mechanical Response of Polymers: An Introduction. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  • Xiao, R., Tian, C.: A constitutive model for strain hardening behaviours of pre-deformed amorphous polymers: incorporating a dissipative dynamics of molecular orientation. J. Mech. Phys. Solids 125, 472–487 (2019)

    Article  MathSciNet  Google Scholar 

  • Xiao, R., Sun, H., Chen, W.: A finite deformation fractional viscoplastic model for the glass transition behaviour of amorphous polymers. Int. J. Non-Linear Mech. 93, 7–14 (2017)

    Article  Google Scholar 

  • Zhang, Y.S., Khademhosseini, A.: Advances in engineering hydrogels. Science 356(6337), eaaf3627 (2017)

    Article  Google Scholar 

  • Zhang, L., Zhao, J., Zhu, J., He, C., Wang, H.: Anisotropic tough poly (vinyl alcohol) hydrogels. Soft Matter 8(40), 10439–10447 (2012)

    Article  Google Scholar 

  • Zhirikova, Z.M., Aloyev, V.Z.: Application of model of the viscoelastic body and the fractal analysis for the description of process of flowability of polymeric nanocomposites. Mater. Sci. Forum 935, 150–154 (2018)

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

R Pramanik: Conceptualization, Writing - original draft

F Soni: Resources

K Shanmuganathan: Supervision

A Arockiarajan: Project administration, Writing - review & editing

Corresponding author

Correspondence to A. Arockiarajan.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramanik, R., Soni, F., Shanmuganathan, K. et al. Mechanics of soft polymeric materials using a fractal viscoelastic model. Mech Time-Depend Mater 26, 257–270 (2022). https://doi.org/10.1007/s11043-021-09486-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-021-09486-0

Keywords

Navigation