Skip to main content

Advertisement

Log in

A nonlinear hybrid energy harvester with high ultralow-frequency energy harvesting performance

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The exploration of renewable energy technology is increasingly important owing to depletion of fossil fuels and the environmental pollution caused by the use of fossil fuels. Converting mechanical energy to electrical energy is one approach to developing renewable energy. However, the harvesting of ultralow-frequency mechanical energy is a challenge that limits the development of energy harvesting technology. To address this difficult problem, this paper proposes a nonlinear hybrid energy harvester in which an electromagnetic generator (EMG) and a triboelectric generator (TEG) are coupled to harvest the mechanical energy from ambient vibrations at ultralow frequencies. The energy harvester is combined with a quasi-zero-stiffness (QZS) mechanism composed of four QZS springs and a linear spring to produce a large-amplitude response and improve the energy harvesting performance. The effect of the mechanical condition (linear, quasi-zero-stiffness and bistable) on the efficiency of energy harvesting is analysed analytically and verified by theoretical and numerical analyses. The dynamics responses of the nonlinear energy harvester influenced by systematic parameters are also dissected. This work provides a guideline for improving the ultralow frequency ambient vibration energy harvesting performance of a TEG through nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Schaller RD, Klimov VI (2004) High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys Rev Lett 92:1–4. https://doi.org/10.1103/physrevlett.92.186601

    Article  Google Scholar 

  2. Träsch M, Déporte A, Delacroix S et al (2019) Analytical linear modelization of a buckled undulating membrane tidal energy converter. Renew Energy 130:245–255. https://doi.org/10.1016/j.renene.2018.06.049

    Article  Google Scholar 

  3. Chen BD, Tang W, He C et al (2018) Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator. Mater Today 21:88–97. https://doi.org/10.1016/j.mattod.2017.10.006

    Article  Google Scholar 

  4. Kammer AS, Olgac N (2016) Delayed-feedback vibration absorbers to enhance energy harvesting. J Sound Vib 363:54–67. https://doi.org/10.1016/j.jsv.2015.10.030

    Article  Google Scholar 

  5. Castagnetti D (2019) A simply tunable electromagnetic pendulum energy harvester. Meccanica 54:749–760. https://doi.org/10.1007/s11012-019-00976-7

    Article  Google Scholar 

  6. Halim MA, Rantz R, Zhang Q et al (2018) An electromagnetic rotational energy harvester using sprung eccentric rotor, driven by pseudo-walking motion. Appl Energy 217:66–74. https://doi.org/10.1016/j.apenergy.2018.02.093

    Article  Google Scholar 

  7. Qiu GL, Liu W, Di Han M et al (2015) A cubic triboelectric generator as a self-powered orientation sensor. Sci China Technol Sci 58:842–847. https://doi.org/10.1007/s11431-015-5790-7

    Article  Google Scholar 

  8. Litak G, Friswell MI, Adhikari S (2016) Regular and chaotic vibration in a piezoelectric energy harvester. Meccanica 51:1017–1025. https://doi.org/10.1007/s11012-015-0287-9

    Article  MathSciNet  MATH  Google Scholar 

  9. Yang Y, Guo W, Pradel KC et al (2012) Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett 12:2833–2838. https://doi.org/10.1021/nl3003039

    Article  Google Scholar 

  10. Siang J, Lim MH, Leong MS (2018) Review of vibration-based energy harvesting technology: mechanism and architectural approach. Int J Energy Res 42:1866–1893. https://doi.org/10.1002/er.3986

    Article  Google Scholar 

  11. Naifar S, Bradai S, Viehweger C, Kanoun O (2017) Survey of electromagnetic and magnetoelectric vibration energy harvesters for low frequency excitation. Measurement 106:251–263. https://doi.org/10.1016/j.measurement.2016.07.074

    Article  Google Scholar 

  12. Fan K, Cai M, Liu H, Zhang Y (2019) Capturing energy from ultra-low frequency vibrations and human motion through a monostable electromagnetic energy harvester. Energy 169:356–368. https://doi.org/10.1016/j.energy.2018.12.053

    Article  Google Scholar 

  13. Halim MA, Cho H, Park JY (2015) Design and experiment of a human-limb driven, frequency up-converted electromagnetic energy harvester. Energy Convers Manag 106:393–404. https://doi.org/10.1016/j.enconman.2015.09.065

    Article  Google Scholar 

  14. Zhu H, Li Y, Shen W, Zhu S (2019) Mechanical and energy-harvesting model for electromagnetic inertial mass dampers. Mech Syst Signal Process 120:203–220. https://doi.org/10.1016/j.ymssp.2018.10.023

    Article  Google Scholar 

  15. Yang B, Lee C, Xiang W et al (2009) Electromagnetic energy harvesting from vibrations of multiple frequencies. J Micromechanics Microengineering 19:035001. https://doi.org/10.1088/0960-1317/19/3/035001

    Article  Google Scholar 

  16. Muhammad F, Ket C, Ooi L, Yurchenko D (2019) Increased power output of an electromagnetic vibration energy harvester through anti-phase resonance. Mech Syst Signal Process 116:129–145. https://doi.org/10.1016/j.ymssp.2018.06.012

    Article  Google Scholar 

  17. Liu X, Qiu J, Chen H et al (2015) Design and optimization of an electromagnetic vibration. IEEE Trans Magn 51:1–4. https://doi.org/10.1109/TMAG.2015.2437892

    Article  Google Scholar 

  18. Zhang LB, Dai HL, Yang YW, Wang L (2019) Design of high-efficiency electromagnetic energy harvester based on a rolling magnet. Energy Convers Manag 185:202–210. https://doi.org/10.1016/j.enconman.2019.01.089

    Article  Google Scholar 

  19. Castagnetti D, Radi E (2018) A piezoelectric based energy harvester with dynamic magnification: modelling, design and experimental assessment. Meccanica 53:2725–2742. https://doi.org/10.1007/s11012-018-0860-0

    Article  Google Scholar 

  20. Castagnetti D (2015) A Belleville-spring-based electromagnetic energy harvester. Smart Mater Struct 24:94009. https://doi.org/10.1088/0964-1726/24/9/094009

    Article  Google Scholar 

  21. Fan F, Tian Z, Lin Z (2012) Flexible triboelectric generator! Nano Energy 1:328–334. https://doi.org/10.1016/j.nanoen.2012.01.004

    Article  Google Scholar 

  22. Wang S, Lin L, Xie Y et al (2013) Sliding-triboelectric nanogenerators based on in-plane charge- separation mechanism. Nano Lett 13:2226–2233. https://doi.org/10.1021/nl400738p

    Article  Google Scholar 

  23. He C, Zhu W, Gu GQ et al (2017) Integrative square-grid triboelectric nanogenerator as a vibrational energy harvester and impulsive force sensor. Nano Res 11:1157–1164. https://doi.org/10.1007/s12274-017-1824-8

    Article  Google Scholar 

  24. Bhatia D, Kim W, Lee S et al (2017) Tandem triboelectric nanogenerators for optimally scavenging mechanical energy with broadband vibration frequencies. Nano Energy 33:515–521. https://doi.org/10.1016/j.nanoen.2017.01.059

    Article  Google Scholar 

  25. Wu C, Liu R, Wang J et al (2017) A spring-based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low-frequency vibration energy. Nano Energy 32:287–293. https://doi.org/10.1016/j.nanoen.2016.12.061

    Article  Google Scholar 

  26. Fu Y, Ouyang H, Davis RB (2020) Effects of electrical properties on vibrations via electromechanical coupling in triboelectric energy harvesting. J Phys D Appl Phys 53:215501. https://doi.org/10.1088/1361-6463/ab7792

    Article  Google Scholar 

  27. Huang X, Li L, Zhang Y (2013) Modeling the open circuit output voltage of piezoelectric nanogenerator. Sci China Technol Sci 56:2622–2629. https://doi.org/10.1007/s11431-013-5352-9

    Article  Google Scholar 

  28. Salauddin M, Toyabur RM, Maharjan P, Park JY (2018) High performance human-induced vibration driven hybrid energy harvester for powering portable electronics. Nano Energy 45:236–246. https://doi.org/10.1016/j.nanoen.2017.12.046

    Article  Google Scholar 

  29. Fezeu GJ, Fokou ISM, Buckjohn CND et al (2020) Probabilistic analysis and ghost-stochastic resonance of a hybrid energy harvester under Gaussian White noise. Meccanica 55:1679–1691. https://doi.org/10.1007/s11012-020-01204-3

    Article  MathSciNet  Google Scholar 

  30. Fu Y, Ouyang H, Davis RB (2018) Nonlinear dynamics and triboelectric energy harvesting from a three-degree-of-freedom vibro-impact oscillator. Nonlinear Dyn 92:1985–2004. https://doi.org/10.1007/s11071-018-4176-3

    Article  Google Scholar 

  31. Wang J, Geng L, Yang K et al (2020) Dynamics of the double-beam piezo–magneto–elastic nonlinear wind energy harvester exhibiting galloping-based vibration. Nonlinear Dyn 100:1963–1983. https://doi.org/10.1007/s11071-020-05633-3

    Article  Google Scholar 

  32. Wang K, Zhou J, Chang Y et al (2020) A nonlinear ultra-low-frequency vibration isolator with dual quasi-zero-stiffness mechanism. Nonlinear Dyn 101:755–773. https://doi.org/10.1007/s11071-020-05806-0

    Article  Google Scholar 

  33. Sun X, Jing X (2015) Multi-direction vibration isolation with quasi-zero stiffness by employing geometrical nonlinearity. Mech Syst Signal Process 62:149–163. https://doi.org/10.1016/j.ymssp.2015.01.026

    Article  Google Scholar 

  34. Hao Z, Cao Q, Wiercigroch M (2017) Nonlinear dynamics of the quasi-zero-stiffness SD oscillator based upon the local and global bifurcation analyses. Nonlinear Dyn 87:987–1014. https://doi.org/10.1007/s11071-016-3093-6

    Article  Google Scholar 

  35. Wang K, Zhou J, Wang Q et al (2019) Low-frequency band gaps in a metamaterial rod by negative-stiffness mechanisms: design and experimental validation. Appl Phys Lett 114:251902. https://doi.org/10.1063/1.5099425

    Article  Google Scholar 

  36. Wang K, Zhou J, Xu D, Ouyang H (2019) Lower band gaps of longitudinal wave in a one-dimensional periodic rod by exploiting geometrical nonlinearity. Mech Syst Signal Process 124:664–678. https://doi.org/10.1016/j.ymssp.2019.02.008

    Article  Google Scholar 

  37. Wang K, Zhou J, Cai C et al (2019) Mathematical modeling and analysis of a meta-plate for very low-frequency band gap. Appl Math Model 73:581–597. https://doi.org/10.1016/j.apm.2019.04.033

    Article  MathSciNet  MATH  Google Scholar 

  38. Lee J, Nomura T, Dede EM (2017) Topology optimization of Halbach magnet arrays using isoparametric projection. J Magn Magn Mater 432:140–153. https://doi.org/10.1016/j.jmmm.2017.01.092

    Article  Google Scholar 

  39. Salauddin M, Park JY (2017) Design and experiment of human hand motion driven electromagnetic energy harvester using dual Halbach magnet array. Smart Mater Struct 26:035011

    Article  Google Scholar 

  40. Niu S, Liu Y, Wang S et al (2013) Theory of sliding-mode triboelectric nanogenerators. Adv Mater 25:6184–6193. https://doi.org/10.1002/adma.201302808

    Article  Google Scholar 

  41. Cheng S, Wang N, Arnold DP (2007) Modeling of magnetic vibrational energy harvesters using equivalent circuit representations. J Micromechanics Microengineering 17:2328–2335. https://doi.org/10.1088/0960-1317/17/11/021

    Article  Google Scholar 

  42. Wang K, Zhou J, Ouyang H et al (2020) A semi-active metamaterial beam with electromagnetic quasi-zero-stiffness resonators for ultralow-frequency band gap tuning. Int J Mech Sci 176:105548. https://doi.org/10.1016/j.ijmecsci.2020.105548

    Article  Google Scholar 

  43. Wang K, Zhou J, Ouyang H et al (2021) A dual quasi-zero-stiffness sliding-mode triboelectric nanogenerator for harvesting ultralow-low frequency vibration energy. Mech Syst Signal Process 151:107368. https://doi.org/10.1016/j.ymssp.2020.107368

    Article  Google Scholar 

  44. Gatti G, Brennan MJ (2011) On the effects of system parameters on the response of a harmonically excited system consisting of weakly coupled nonlinear and linear oscillators. J Sound Vib 330:4538–4550. https://doi.org/10.1016/j.jsv.2011.04.006

    Article  Google Scholar 

  45. Carrella A, Brennan MJ, Kovacic I, Waters TP (2009) On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J Sound Vib 322:707–717. https://doi.org/10.1016/j.jsv.2008.11.034

    Article  Google Scholar 

  46. Shao JJ, Jiang T, Wang ZL (2020) Theoretical foundations of triboelectric nanogenerators (TENGs). Sci China Technol Sci 63:1087–1109. https://doi.org/10.1007/s11431-020-1604-9

    Article  Google Scholar 

Download references

Acknowledgements

This research work was supported by China Postdoctoral Science Foundation (2020M672476), National Natural Science Foundation of China (12002122, 11972152) and National Key R&D Program of China (2017YFB1102801). The first author, Kai Wang, would like to thank the support from the China Scholarship Council (CSC) which sponsors his visit to the University of Liverpool where the original idea was conceived.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaxi Zhou.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Ouyang, H., Zhou, J. et al. A nonlinear hybrid energy harvester with high ultralow-frequency energy harvesting performance. Meccanica 56, 461–480 (2021). https://doi.org/10.1007/s11012-020-01291-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-020-01291-2

Keywords

Navigation