Skip to main content
Log in

On the support of the free additive convolution

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We consider the free additive convolution of two probability measures μ and ν on the real line and show that μv is supported on a single interval if μ and ν each has single interval support. Moreover, the density of μν is proven to vanish as a square root near the edges of its support if both μ and ν have power law behavior with exponents between −1 and 1 near their edges. In particular, these results show the ubiquity of the conditions in our recent work on optimal local law at the spectral edges for addition of random matrices [5].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Ajanki, L. Erdős and T. Krüger, Quadratic Vector Equations on Complex Upper Half-Plane, American Mathematical Society, Providence, RI, 2019.

    Book  Google Scholar 

  2. N. I. Akhiezer, The Classical Moment Problem: and Some Related Questions in Analysis, Hafner Publishing Co., New York, 1965.

    MATH  Google Scholar 

  3. J. Alt, L. Erdős and T. Krüger, The Dyson equation with linear self-energy: spectral bands, edges and cusps, arXiv:1804.07752 [math.OA]

  4. Z. G. Bao, L. Erdős and K. Schnelli, Local stability of the free additive convolution, J. Funct. Anal. 271 (2016), 672–719.

    Article  MathSciNet  Google Scholar 

  5. Z. G. Bao, L. Erdős and K. Schnelli, Spectral rigidity for addition of random matrices at the regular edge, J. Funct. Anal. 279 (2020), 108639.

    Article  MathSciNet  Google Scholar 

  6. Z. G. Bao, L. Erdős and K. Schnelli, Convergence rate for spectral distribution of addition of random matrices, Adv. Math. 319 (2017), 251–291.

    Article  MathSciNet  Google Scholar 

  7. Z. G. Bao, L. Erdős and K. Schnelli, Local law of addition of random matrices on optimal scale, Comm. Math. Phys. 349 (2017), 947–990.

    Article  MathSciNet  Google Scholar 

  8. S. Belinschi, A note on regularity for free convolutions, Ann. Inst. Henri Poincaré Probab. Stat. 42 (2006), 635–648.

    Article  MathSciNet  Google Scholar 

  9. S. Belinschi, The Lebesgue decomposition of the free additive convolution of two probability distributions, Probab. Theory Related Fields 142 (2008), 125–150.

    Article  MathSciNet  Google Scholar 

  10. S. Belinschi, L-boundedness of density for free additive convolutions, Rev. Roumaine Math. Pures Appl. 59 (2014), 173–184.

    MathSciNet  MATH  Google Scholar 

  11. S. T. Belinschi, F. Benaych-Georges and A. Guionnet, Regularization by free additive convolution, square and rectangular cases, Complex Anal. Oper. Theory 3 (2009), 611.

    Article  MathSciNet  Google Scholar 

  12. S. Belinschi and H. Bercovici, A new approach to subordination results in free probability, J. Anal. Math. 101 (2007), 357–365.

    Article  MathSciNet  Google Scholar 

  13. H. Bercovici and V. Pata, Stable laws and domains of attraction in free probability theory, Ann. of Math. (2) 149 (1999), 1023–1060.

    Article  MathSciNet  Google Scholar 

  14. H. Bercovici and D. Voiculescu, Superconvergence to the central limit and failure of the Cramér theorem for free random variables, Prob. Theory Related Fields 103 (1995), 215–222.

    Article  Google Scholar 

  15. H. Bercovici and D. Voiculescu, Regularity questions for free convolution, nonselfadjoint operator algebras, operator theory, and related topics, Oper. Theory Adv. Appl. 104 (1998), 37–47.

    MATH  Google Scholar 

  16. H. Bercovici and J.-C. Wang, On freely indecomposable measures, Indiana Univ. Math. J. 57 (2008), 2601–2610.

    Article  MathSciNet  Google Scholar 

  17. H. Bercovici, J.-C. Wang and P. Zhong, Superconvergence to freely infinitely divisible distributions, Pacific I. Math. 292 (2017), 273–291.

    Article  MathSciNet  Google Scholar 

  18. P. Biane, On the free convolution with a semi-circular distribution, Indiana Univ. Math. I. 46 (1997), 705–718.

    MathSciNet  MATH  Google Scholar 

  19. P. Biane, Processes with free increments, Math. Z. 227 (1998), 143–174.

    Article  MathSciNet  Google Scholar 

  20. G. P. Chistyakov and F. Götze, The arithmetic of distributions in free probability theory, Cent. Euro. I. Math. 9 (2011), 997–1050.

    Article  MathSciNet  Google Scholar 

  21. H. W. Huang, Supports of measures in a free additive convolution semigroup, Int. Math. Res. Not. IMRN 2015 (2015), 4269–4292.

    Article  MathSciNet  Google Scholar 

  22. V. Kargin, On superconvergence of sums of free random variables, Ann. Probab. 35 (2007), 1931–1949.

    Article  MathSciNet  Google Scholar 

  23. V. Kargin, A concentration inequality and a local law for the sum of two random matrices, Prob. Theory Related Fields 154 (2012), 677–702.

    Article  MathSciNet  Google Scholar 

  24. J. O. Lee and K. Schnelli, Local deformed semicircle law and complete delocalization for Wigner matrices with random potential, J. Math. Phys. 54 (2013), 103504.

    Article  MathSciNet  Google Scholar 

  25. J. O. Lee and K. Schnelli, Extremal eigenvalues and eigenvectors of deformed Wigner matrices, Probab. Theory Related Fields 164 (2016), 165–241.

    Article  MathSciNet  Google Scholar 

  26. R. Lenczewski, Decompositions of the free additive convolution, J. Funct. Anal. 246 (2007), 330–365.

    Article  MathSciNet  Google Scholar 

  27. H. Maassen, Addition of freely independent random variables, J. Funct. Anal. 106 (1992), 409–438.

    Article  MathSciNet  Google Scholar 

  28. A. Nica, Multi-variable subordination distributions for free additive convolution, J. Funct. Anal. 257 (2009), 428–463.

    Article  MathSciNet  Google Scholar 

  29. A. Nica and R. Speicher, On the multiplication of free N-tuples of noncommutative random variables, Amer. J. Math. 118 (1996), 799–837.

    Article  MathSciNet  Google Scholar 

  30. S. Olver and R. R. Nadakuditi, Numerical computation of convolutions in free probability theory, arXiv:1203.1958 [math.PR]

  31. T. Shcherbina, On universality of local edge regime for the deformed Gaussian unitary ensemble, J. Stat. Phys. 143 (2011), 455–481.

    Article  MathSciNet  Google Scholar 

  32. D. Voiculescu, Symmetries of some reduced free product C*-algebras, in Operator Algebras and their Connections with Topology and Ergodic Theory, Springer, Berlin, 1985, pp. 556–588.

    Chapter  Google Scholar 

  33. D. Voiculescu, Addition of certain non-commuting random variables, J. Funct. Anal. 66 (1986), 323–346.

    Article  MathSciNet  Google Scholar 

  34. D. Voiculescu, Limit laws for random matrices and free products, Invent. Math. 104 (1991), 201–220.

    Article  MathSciNet  Google Scholar 

  35. D. Voiculescu, The analogues of entropy and of Fisher’s information theory in free probability theory, I, Comm. Math. Phys. 155 (1993), 71–92.

    Article  MathSciNet  Google Scholar 

  36. J.-C. Wang, Local limit theorems in free probability theory, Ann. Prob. 38 (2010), 1492–1506.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Schnelli.

Additional information

Supported in part by Hong Kong RGC Grant ECS 26301517.

Supported in part by ERC Advanced Grant RANMAT No. 338804.

Supported in part by the Knut and Alice Wallenberg Foundation and the Swedish Research Council Grant VR-2017-05195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, Z., Erdős, L. & Schnelli, K. On the support of the free additive convolution. JAMA 142, 323–348 (2020). https://doi.org/10.1007/s11854-020-0135-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-020-0135-2

Navigation