Skip to main content
Log in

Comparative Effectiveness of Potential Elicitors of Soybean Plant Resistance Against Spodoptera Littoralis and Their Effects on Secondary Metabolites and Antioxidant Defense System

Vergleichende Wirksamkeit potenzieller Auslöser von Sojabohnenpflanzenresistenz gegen Spodoptera littoralis und ihre Auswirkungen auf Sekundärmetaboliten und das antioxidative Abwehrsystem

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Cotton leaf worm (Spodoptera littoralis) is considered one of the most destructive agricultural pests in Egypt. It is overcome by the producer by using chemical pesticides, but that leads to the appearance of new generations and causes environmental pollution. So in the present investigation six soybean genotypes (Giza-82, Giza 22, Giza 83, Giza 21, Giza 35 and Giza 111) were planted under natural infection with cotton leaf worm. The effect of two elicitors, methyl jasmonate (20 µM MeJA) and sodium nitroprusside (500 µM SNP) on the six soybean genotypes was studied to enhance the ability of the susceptible genotypes to resist cotton leaf worm. Results showed that Giza 35 and Giza 111 showed tolerance performance under natural infection compared to Giza 22 and Giza 82 as sensitive ones, while Giza 83 and Giza 21 showed moderate tolerance. Treatments with MeJA and SNP positively affected contents of secondary metabolites (phenol, flavonoid and tannin), non-enzymatic antioxidants (anthocyanin, tocopherol and ascorbic acid) and enzymatic antioxidants (catalase, peroxidase, polyphenol oxidase and Guaiacol peroxidase) in shoots of all soybean genotypes. Treatment with MeJA was found to be more effective than SNP and enhanced the resistance of the susceptible genotypes. In conclusion, treatment of soybean plants with MeJA and SNP would be effective enhancing the ability of these plants to resists cotton leaf worm infection and increased secondary metabolites and antioxidants responsible for plant defense.

Zusammenfassung

Der Baumwollblattwurm (Spodoptera littoralis) gilt als einer der zerstörerischsten landwirtschaftlichen Schädlinge in Ägypten. Er wird vom Erzeuger durch den Einsatz chemischer Pestizide bekämpft, was jedoch zum Auftreten neuer Generationen führt und Umweltverschmutzung verursacht. In der vorliegenden Untersuchung wurden daher sechs Sojabohnen-Genotypen (Giza 82, Giza 22, Giza 83, Giza 21, Giza 35 und Giza 111) unter natürlichem Befall mit dem Baumwollblattwurm angepflanzt. Die Wirkung von zwei Elicitoren, Methyljasmonat (20 µM MeJA) und Natrium-Nitroprussid (500 µM SNP), auf die sechs Sojabohnen-Genotypen wurde untersucht, um die Resistenzfähigkeit der anfälligen Genotypen gegen den Baumwollblattwurm zu erhöhen. Die Ergebnisse zeigten, dass Giza 35 und Giza 111 unter natürlicher Infektion eine Toleranzleistung zeigten und Giza 22 und Giza 82 als empfindlich eingestuft wurden, während Giza 83 und Giza 21 eine moderate Toleranz zeigten. Behandlungen mit MeJA und SNP wirkten sich positiv auf den Gehalt an Sekundärmetaboliten (Phenol, Flavonoid und Tannin), nicht-enzymatischen Antioxidantien (Anthocyan, Tocopherol und Ascorbinsäure) und enzymatischen Antioxidantien (Katalase, Peroxidase, Polyphenoloxidase und Guaiacol-Peroxidase) in den Trieben aller Sojabohnen-Genotypen aus. Die Behandlung mit MeJA erwies sich als effektiver als SNP und erhöhte die Resistenz der anfälligen Genotypen. Zusammenfassend lässt sich sagen, dass die Behandlung von Sojapflanzen mit MeJA und SNP die Fähigkeit dieser Pflanzen, einer Infektion mit dem Baumwollblattwurm entgegenzuwirken, wirksam verbessert und die für die Pflanzenabwehr verantwortlichen Sekundärmetaboliten und Antioxidantien erhöht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abd El-Rahman SS, Mohamed HI (2014) Application of benzothiadiazole and Trichoderma harzianum to control faba bean chocolate spot disease and their effect on some physiological and biochemical traits. Acta Physiol Plantarum 36(2):343–354

    Article  CAS  Google Scholar 

  • Abd El-Rahman SS, Mazen MM, Mohamed HI, Mahmoud NM (2012) Induction of defence related enzymes and phenolic compounds in lupin (Lupinus albus L.) and their effects on host resistance against Fusarium wilt. Eur J Plant Pathol 134(1):105–116

    Article  CAS  Google Scholar 

  • Abouelghar GE, Sakr H, Ammar HAY, Nassar M (2013) Sublethal effects of spinosad (tracer®) on the cotton leaf worm (Lepidoptera: noctuidae). Plant Protect Res 53(3):1–10

    Google Scholar 

  • Akladious SA, Mohamed HI (2017) Physiological role of exogenous nitric oxide in improving performance, yield and some biochemical aspects of sunflower plant under zinc stress. Acta Biol Hungarica 68(1):101–114. https://doi.org/10.1556/018.68.2017.1.9

    Article  CAS  Google Scholar 

  • All JN, Boerma HR, Parrott WA, Recto BG, Walke DR, Stewart CN (1999) New technologies for development of insect resistant soybean. World Soybean Research Conference VI, Chicago. Superior Printing, Champaign, pp 314–317

    Google Scholar 

  • Aly AA, Mansour MTM, Mohamed HI, Abd-Elsalam KA (2012) Examination of correlations between several biochemical components and powdery mildew resistance of flax cultivars. Plant Pathol 28(2):149–155

    Article  CAS  Google Scholar 

  • Aly AA, Mohamed HI, Mansour MTM, Omar MR (2013) Suppression of powdery mildew on flax by foliar application of essential oils. J Phytopathol 161:376–381

    Article  Google Scholar 

  • Ashry NA, Mohamed H (2011) Impact of secondary metabolites and related enzymes in flax resistance and or susceptibility to powdery mildew. World J Agric Sci 7(1):78–85

    CAS  Google Scholar 

  • Ashry NA, Ghonaim MM, Mohamed HI, Mogazy AM (2018) Physiological and molecular genetic studies on two elicitors for improving the tolerance of six Egyptian soybean cultivars to cotton leaf worm. Plant Physiol Biochem 130:224–234

    Article  CAS  PubMed  Google Scholar 

  • Barbehenn R (2001) Roles of peritrophic membranes in protecting herbivorous insects from ingested plant allelochemicals. Arch Insect Biochem Physiol 47(2):86–99

    Article  CAS  PubMed  Google Scholar 

  • Barbehenn RV (2003) Antioxidants in Grasshoppers: higher levels defend the midgut tissues of a polyphagous species than a graminivorous species. J Chem Ecol 29(3):683–702. https://doi.org/10.1023/A:1022824820855

    Article  CAS  PubMed  Google Scholar 

  • Barbehenn RV, Peter C (2011) Tannins in plant-herbivore interactions. Phytochemistry 72(13):1551–1565

    Article  CAS  PubMed  Google Scholar 

  • Beers RF, Sizer I (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195(1):133–140

    Article  CAS  PubMed  Google Scholar 

  • Boyd ML, Bailery WC (2000) Soybean pest management: Bean leaf beetle. G7150. University of Missouri Columbia extension. http://extension.missouri.edu

  • Burns R (1971) Method for estimation of tannin in grain sorghum 1. Agron J 63(3):511–512

    Article  CAS  Google Scholar 

  • Chanwitheesuk A, Teerawutgulrag A, Rakariyatham N (2005) Screening of antioxidant activity and antioxidant compounds of some edible plants of Thailand. Food Chem 92(3):491–497

    Article  CAS  Google Scholar 

  • Creelman RA, Tierney ML, Mullet JE (1992) Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc Natl Acad Sci 89(11):4938–4941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dar T, Uddin M, Khan MM, Hakeem KR, Jaleel H (2015) Jasmonates counter plant stress: a review. Environ Exp Bot 115:49–57

    Article  CAS  Google Scholar 

  • Dihazi A, Jaiti F, Zouine J, El Hassni M, El Hadrami I (2003) Effect of salicylic acid on phenolic compounds related to date palm resistance to Fusarium oxysporum f. sp. albedinis. Phytopathol Mediterr 42(1):9–16

    CAS  Google Scholar 

  • Doares SH, Syrovets T, Weiler EW, Ryan CA (1995) Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc Natl Acad Sci 92(10):4095–4098. https://doi.org/10.1073/pnas.92.10.4095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Beltagi HS, Mohamed HI, Sofy MR (2020a) Role of ascorbic acid, glutathione and proline applied as singly or in sequence combination in improving chickpea plant through physiological change and antioxidant defense under different levels of irrigation intervals. Molecules. https://doi.org/10.3390/molecules25071702

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Beltagi HS, Sofy MR, Aldaej MI, Mohamed HI (2020b) Silicon alleviates copper toxicity in flax plants by up-regulating antioxidant defense and secondary metabolites and decreasing oxidative damage. Sustainability 12(11):4732. https://doi.org/10.3390/su12114732

    Article  CAS  Google Scholar 

  • El-Garhy AM, Akram RM, Rabie EM, Ragheb SB, Khewa MM (2015) Diallel analysis for resistance to cotton leaf worm, seed yield and some related characters in soybean. Egypt J Plant Breed 19(3):965–977

    Article  Google Scholar 

  • El-Khawas S (2012) Priming Pisum sativum with salicylic acid against the leafminer Liriomyza trifolii. Afr J Agric Res 34:4731–4737

    Google Scholar 

  • El-Sherbeni AE, Khaleid MS, AbdAllah SA, Ali OS (2019) Effect of some insecticides alone and in combination with salicylic acid against aphid, Aphis gossypii, and whitefly Bemisia tabaci on the cotton field. Bull Natl Res Centre 43(1):57. https://doi.org/10.1186/s42269-019-0103-0

    Article  Google Scholar 

  • Felton GW, Donato K, Del Vecchio RJ, Duffey SS (1989) Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores. J Chemical Ecol 15(12):2667–2694. https://doi.org/10.1007/BF01014725

    Article  CAS  Google Scholar 

  • Franzen LD, Gutsche AR, Heng-Moss TM, Higley LG, Sarath G, Burd JD (2007) Physiological and Biochemical Responses of Resistant and Susceptible Wheat to Injury by Russian Wheat Aphid. J Econ Entomol 100(5):1692–1703

    Article  CAS  PubMed  Google Scholar 

  • Gazaryan I, Lagrimini LM, Ashby GA, Thorneley RNF (1996) Mechanism of indole-3-acetic acid oxidation by plant peroxidases: anaerobic stopped-flow spectrophotometric studies on horseradish and tobacco peroxidases. Biochem J 313(3):841–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez K, Gomez A (1984) Statistical procedures for agricultural research, 2nd edn. John Wiley & Sons, New York, p 680

    Google Scholar 

  • Guo Y, Wang X, He W, Zhou G, Guo B, Zhang L et al (2011) Soybean omics and biotechnology in China. Plant Omics 4(6):318

    CAS  Google Scholar 

  • Guo Y, Tian Z, Yan D, Zhang J, Qin P (2009) Effects of nitric oxide on salt stress tolerance in Kosteletzkya virginica. Life Sci J 6(1):67–75

    CAS  Google Scholar 

  • Hahlbrock K, Bednarek P, Ciolkowsk I, Hamberger B, Heise A, Liedgens H et al (2003) Non-self recognition, transcriptional reprogramming, and secondary metabolite accumulation during plant/pathogen interactions. Proc Natl Acad Sci 100(Supplement 2):14569–14576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helmi A, Mohamed H (2016) Biochemical and ultrastructural changes of some tomato cultivars after infestation with Aphis gossypii Glover (Hemiptera: Aphididae) at Qalyubiyah, Egypt. Gesunde Pflanz 68(1):41–50

    Article  CAS  Google Scholar 

  • Iverson AL, Iverson LR, Eshita S (2001) The effects of surface-applied jasmonic and salicylic acids on caterpillar growth and damage to tomato plants. Ohio J Sci 101(5):90–94

    CAS  Google Scholar 

  • Jamali B, Eshghi S, Kholdebarin B (2014) Response of strawberry ‘Selva’ plants on foliar application of sodium nitroprusside (nitric oxide donor) under saline conditions. J Hortic Res 22(2):139–150

    Article  CAS  Google Scholar 

  • Kanobe C (2012) Fatty acid changes in soybean (Glycine max) under soybean aphid (Aphis glycines) infestation and their implications on plant defense against insects. Graduate Theses and Dissertations, 12840

    Book  Google Scholar 

  • Kant MR, Jonckheere W, Knegt B, Lemos F, Liu J, Schimmel BC et al (2015) Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. Ann Bot 115(7):1015–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kar M, Mishra D (1976) Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol 57(2):315–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari A, Sheokand S, Swaraj K (2010) Nitric oxide induced alleviation of toxic effects of short term and long term Cd stress on growth, oxidative metabolism and Cd accumulation in Chickpea. Braz J Plant Physiol 22(4):271–284

    Article  Google Scholar 

  • Liu Y (2013) Nitric oxide as a potent fumigant for postharvest pest control. J Econ Entomol 106(6):2267–2274

    Article  CAS  PubMed  Google Scholar 

  • Lou Y, Cheng J (2003) Role of rice volatiles in the foraging behaviour of the predator cyrtorhinus lividipennis for the rice brown planthopper nilaparvata lugens. Biol Control 48(1):73–86

    Google Scholar 

  • Lucas NO (2012) Effect of defoliation in soybean and susceptibility of soybean loopers to reduced risk insecticides. Ph.D. Thesis. Faculty of Mississippi State University

  • Machado R, Arce C, Ferrieri A, Baldwin I, Erb M (2015) Jasmonate-dependent depletion of soluble sugars compromises plant resistance toManduca sexta. New Phytol 207(1):91–105. https://doi.org/10.1111/nph.13337

    Article  CAS  PubMed  Google Scholar 

  • Maksymiec W, Wójcik M, Krupa Z (2007) Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. Chemosphere 66(3):421–427

    Article  CAS  PubMed  Google Scholar 

  • Maltas E, Dageri N, Vural CH, Yildiz S (2011) Biochemical and molecular analysis of soybean seed from Turkey. Med Plants Res 5:1575–1581

    CAS  Google Scholar 

  • Mancinelli A, Yang C, Rabino I, Kuzmanoff K (1976) Photocontrol of anthocyanin synthesis. Plant Physiol 58(2):214–217. https://doi.org/10.1104/pp.58.2.214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazid M, Khan T, Mohammad F (2011) Role of secondary metabolites in defense mechanisms of plants. Biol Med 3(2):232–249

    CAS  Google Scholar 

  • McCarville M, Hodgson E, Matt O (2010) Green clover worms appear in soybean. Iowa State University Extension. http://www.extension.iastate.edu (Verified 7/18/10)

  • Mello M, Silva-Filho M (2002) Plant-insect interactions: an evolutionary arms race between two distinct defense mechanisms. Braz J Plant Physiol 14(2):71–81

    Article  CAS  Google Scholar 

  • Melvin JM, Muthukumaran N (2008) Role of certain elicitors on the chemical induction of resistance in tomato against the leaf caterpillar spodoptera litura fab. Notulae Bot Hortic Agrobot Cluj Napoca 36:71–75

    CAS  Google Scholar 

  • Mohamed HI, Abd-El Hameed A (2014) Molecular and biochemical markers of some Vicia faba L. genotypes in response to storage insect pests infestation. J Plant Interact 9(1):618–626. https://doi.org/10.1080/17429145.2013.879678

    Article  CAS  Google Scholar 

  • Mohamed HI, Akladious SA (2017) Changes in antioxidants potential, secondary metabolites and plant hormones induced by different fungicides treatment in cotton plants. Pesticide Physiol Biochem 142:117–122

  • Mohamed HI, Latif HH (2017) Improvement of drought tolerance of soybean plants by using methyl jasmonate. Physiol Mol Biol Plants 23(3):545–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamed HI, Elsherbiny EA, Abdelhamid MT (2016c) Physiological and biochemical responses of Vicia faba plants to foliar application with zinc and iron. Gesunde Pflanz 68:201–212

    Article  CAS  Google Scholar 

  • Mohamed HI, Latif HH, Hanafy RS (2016a) Influence of nitric oxide application on some biochemical aspects, endogenous hormones, minerals and phenolic compounds of Vicia faba plant grown under arsenic stress. Gesunde Pflanz 68:99–107

    Article  CAS  Google Scholar 

  • Mohamed HI, Mohammed AH, Mogazy AM (2016b) Effects of plant defense elicitors on soybean (Glycine max l.) growth, photosynthetic pigments, osmolyts and lipid components in response to cotton worm (Spodoptera littoralis) infestation. Bangladesh J Bot 45(6):597–604

    Google Scholar 

  • Mohamed HI, Akladious SA, El-Beltagi HS (2018a) Mitigation the harmful effect of salt stress on physiological, biochemical and anatomical traits by foliar spray with trehalose on wheat cultivars. Fresenius Environ Bull 27(10):7054–7065

    CAS  Google Scholar 

  • Mohamed HI, El-Beltagi HS, Aly AA, Latif HH (2018b) The role of systemic and non systemic fungicides on the physiological and biochemical parameters in Gossypium hirsutum plant, implications for defense responses. Fresenius Environ Bull 27(12):8585–8593

    CAS  Google Scholar 

  • Mukherjee SP, Choudhuri MA (1983) Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58(2):166–170

    Article  CAS  Google Scholar 

  • Munné-Bosch S (2005) The role of α‑tocopherol in plant stress tolerance. J Plant Physiol 162(7):743–748

    Article  PubMed  CAS  Google Scholar 

  • Murugan M, Dhandapani N (2007) Induced systemic resistance activates defense responses to Interspecific insect infestations on tomato. J Vegetable Sci 12(3):43–62

    Article  Google Scholar 

  • Nafie E, Hathout T, Al Mokadem A (2011) Jasmonic acid elicits oxidative defense and detoxification systems in Cucumis melo L. cells. Braz J Plant Physiol 23(2):161–174

    Article  CAS  Google Scholar 

  • Nagata T, Todoriki S, Masumizu T, Suda I, Furuta S, Du Z et al (2003) Levels of active oxygen species are controlled by ascorbic acid and anthocyanin in arabidopsis. J Agric Food Chem 51(10):2992–2999

    Article  CAS  PubMed  Google Scholar 

  • Paul N, Hatcher PE, Taylor JE (2000) Coping with multiple enemies: an integration of molecular and ecological perspectives. Trends Plant Sci 5(5):220–225

    Article  CAS  PubMed  Google Scholar 

  • Philip B, Bernard L, William H (1954) Vitamins and deficiency diseases. Practical Physiological Chemistry. McGraw-Hill, New York, Toronto, London, pp 1272–1274

    Google Scholar 

  • Polle A, Otter T, Seifert F (1994) Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L.). Plant Physiol 106(1):53–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popova L, Tuan T (2010) Nitric oxide in plants: properties, biosynthesis and physiological functions. Iran J Sci Technol 34:173–183

    CAS  Google Scholar 

  • Semchuk NM, Vasylyk YV, Kubrak O, Lushchak VI (2011) Effect of sodium nitroprusside and S‑nitrosoglutathione on pigment content and antioxidant system of tocopherol-deficient plants of Arabidopsis thaliana. Ukr Biokhim Zh 83(6):69–79

    CAS  Google Scholar 

  • Senthil-Nathan S, Kalaivani K, Choi M, Paik C (2009) Effects of jasmonic acid-induced resistance in rice on the plant brownhopper, Nilaparvata lugens Stål (Homoptera: Delphacidae). Pesticide Biochem Physiol 95(2):77–84

    Article  CAS  Google Scholar 

  • Shi Q, Ding F, Wang X, Wei M (2007) Exogenous nitric oxide protect cucumber roots against oxidative stress induced by salt stress. Plant Physiol Biochem 45(8):542–550

    Article  CAS  PubMed  Google Scholar 

  • Silber R, Farber C, Papadopoulos E, Nevrla D, Liebes L, Bruck M et al (1992) Glutathione depletion in chronic lymphocytic leukemia B lymphocytes. Blood 80(8):2038–2043

  • Simaei M, Khavari-Nejad RA, Bernard F (2012) Exogenous application of salicylic acid and nitric oxide on the ionic contents and enzymatic activities in nacl-stressed soybean plants. Am J Plant Sci 03(10):1495–1503

    Article  CAS  Google Scholar 

  • Simmonds M (2001) Importance of flavonoids in insect-plant interactions: feeding and oviposition. Phytochemistry 56(3):245–252

    Article  CAS  PubMed  Google Scholar 

  • Soares A, Souza T, Jacinto T, Machado O (2010) Effect of methyl jasmonate on antioxidative enzyme activities and on the contents of ROS and H2O2 in Ricinus communis leaves. Braz J Plant Physiol 22(3):151–158

    Article  Google Scholar 

  • Sofy AR, Dawoud RA, Sofy MR, Mohamed HI, Hmed AA, El-Dougdoug NK (2020a) Improving regulation of enzymatic and non-enzymatic antioxidants and stress-related gene stimulation in cucumber mosaic cucumovirus-infected cucumber plants treated with Glycine Betaine, Chitosan and combination. Molecules 25(10):2341. https://doi.org/10.3390/molecules25102341

    Article  CAS  PubMed Central  Google Scholar 

  • Sofy AR, Hmed AA, Alnaggar A, Dawoud RA, Elshaarawy R, Sofy MR (2020b) Mitigating effects of Bean yellow mosaic virus infection in faba bean using new carboxymethyl chitosan-titania nanobiocomposites. Int J Biol Macromol 163:1261–1275

    Article  CAS  PubMed  Google Scholar 

  • Sofy MR, Elhawat N, Tarek A (2020c) Glycine betaine counters salinity stress by maintaining high K+/Na+ ratio and antioxidant defense via limiting Na+ uptake in common bean (Phaseolus vulgaris L.). Ecotoxicol Environ Saf 200:110732. https://doi.org/10.1016/j.ecoenv.2020.110732

    Article  CAS  PubMed  Google Scholar 

  • Sofy MR, Elhindi KM, Farouk S, Alotaibi MA (2020d) Zinc and paclobutrazol mediated regulation of growth, upregulating antioxidant aptitude and plant productivity of pea plants under salinity. Plants 9(9):1197. https://doi.org/10.3390/plants9091197

    Article  CAS  PubMed Central  Google Scholar 

  • Sofy MR, Seleiman MF, Alhammad B, Alharbi B, Mohamed H (2020e) Minimizing adverse effects of Pb on maize plants by combined treatment with Jasmonic, salicylic acids and proline. Agronomy 10(5):699. https://doi.org/10.3390/agronomy10050699

    Article  CAS  Google Scholar 

  • SoyStats (2016) American soybean association. Available at http://soystats.com, St. Louis, USA Krishnan HB.2000: Biochemistry and molecular biology of soybean seed storage proteins. New Seeds 2000 2:1–25

  • Stepien P, Klobus G (2005) Antioxidant defense in the leaves of C3 and C4 plants under salinity stress. Physiol Plantarum 125(1):31–40

    Article  CAS  Google Scholar 

  • Stewart R, Sawyer BJB, Bucheli CS, Robinson SP (2001) Polyphenol oxidase is induced by chilling and wounding in pineapple. Functional Plant Biol 28(3):181. https://doi.org/10.1071/pp00094

    Article  CAS  Google Scholar 

  • Sultana B, Anwar F, Ashraf M (2009) Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules 14(6):2167–2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thaler J, Karban R, Ullman D, Boege K, Bostock R (2002) Cross-talk between jasmonate and salicylate plant defense pathways: effects on several plant parasites. Oecologia 131(2):227–235

    Article  PubMed  Google Scholar 

  • Tian D, Peiffer M, De Moraes C, Felton GW (2014) Roles of ethylene and jasmonic acid in systemic induced defense in tomato (Solanum lycopersicum) against Helicoverpa zea. Planta 239(3):577–589

    Article  CAS  PubMed  Google Scholar 

  • War AR, Paulraj MG, War MY, Ignacimuthu S (2011a) Role of salicylic acid in induction of plant defense system in chickpea (Cicer arietinum L.). Plant Signal Behav 6(11):1787–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • War AR, Shanmugavel L, Paulraj MG, War MY, Savarimuthu I (2011b) Oxidative response of groundnut (Arachis hypogaea) plants to salicylic acid, neem oil formulation and Acalypha fruticosa leaf extract. Am J Plant Physiol 6(4):209–219

    Article  CAS  Google Scholar 

  • Wolucka B, Goossens A, Inzé D (2005) Methyl jasmonate stimulates the de novo biosynthesis of vitamin C in plant cell suspensions. J Exp Bot 56(419):2527–2538

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Hua B, Zhang F (2008) Induction of the activities of antioxidative enzymes and the levels of malondialdehyde in cucumber seedlings as a consequence of Bemisia tabaci (Hemiptera: Aleyrodidae) infestation. Arthropod Plant Interact 2(4):209–213

    Article  Google Scholar 

  • Zhao X, Chen L, Rehmani M, Wang Q, Wang S, Hou P et al (2013) Effect of nitric oxide on alleviating cadmium toxicity in rice (Oryza sativa L.). J Integr Agric 12(9):1540–1550

    Article  Google Scholar 

  • Zhu-Salzman K, Luthe DS, Felton G (2008) Arthropod-inducible proteins: broad spectrum defenses against multiple herbivores. Plant Physiol 146(3):852–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heba I. Mohamed.

Ethics declarations

Conflict of interest

H.I. Mohamed, A.H.M.A. Mohammed, N.M. Mohamed, N.A. Ashry, L.M. Zaky and A.M. Mogazy declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, H.I., Mohammed, A.H.M.A., Mohamed, N.M. et al. Comparative Effectiveness of Potential Elicitors of Soybean Plant Resistance Against Spodoptera Littoralis and Their Effects on Secondary Metabolites and Antioxidant Defense System. Gesunde Pflanzen 73, 273–285 (2021). https://doi.org/10.1007/s10343-021-00546-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-021-00546-6

Keywords

Schlüsselwörter

Navigation