Skip to main content
Log in

Arsenic toxicity in livestock growing in arsenic endemic and control sites of West Bengal: risk for human and environment

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The present study aims to estimate geochemical arsenic toxicity in the domestic livestock and possible risk for human and environment caused by them. Daily dietary arsenic intake of an exposed adult cow or bull is nearly 4.56 times higher than control populace and about 3.65 times higher than exposed goats. Arsenic toxicity is well exhibited in all the biomarkers through different statistical interpretations. Arsenic bioconcentration is faster through water compared to paddy straw and mostly manifested in faeces and tail hair in cattle. Cow dung and tail hair are the most pronounced pathways of arsenic biotransformation into environment. A considerable amount of arsenic has been observed in animal proteins such as cow milk, boiled egg yolk, albumen, liver and meat from the exposed livestock. Cow milk arsenic is mostly accumulated in casein (83%) due to the presence of phosphoserine units. SAMOE–risk thermometer, calculated for the most regularly consumed foodstuffs in the area, shows the human health risk in a distinct order: drinking water > rice grain > cow milk > chicken > egg > mutton ranging from class 5 to 1. USEPA health risk assessment model reveals more risk in adults than in children, subsisting severe cancer risk from the foodstuffs where the edible animal proteins cannot be ignored. Therefore, the domestic livestock should be urgently treated with surface water, while provision of both arsenic-free drinking water and nutritional supplements is mandatory for the affected human population to overcome the severe arsenic crisis situation.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abedin, M. J., Cresser, M. S., Meharg, A. A., Feldmann, J., & Cotter-Howells, J. (2002). Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environmental Science & Technology, 36(5), 962–968. https://doi.org/10.1021/es0101678.

    Article  CAS  Google Scholar 

  • Abernathy, C. O., Liu, Y. P., Longfellow, D., Aposhian, H. V., Beck, B., Fowler, B., et al. (1999). Arsenic: Health effects, mechanisms of actions, and research issues. Environmental Health Perspectives, 107(7), 593–597. https://doi.org/10.1289/ehp.99107593.

    Article  CAS  Google Scholar 

  • Abrahams, P. W., & Thornton, I. (1994). The contamination of agricultural land in the metalliferous province of southwest England: Implications to livestock. Agriculture, Ecosystems & Environment, 48(2), 125–137. https://doi.org/10.1016/0167-8809(94)90083-3.

    Article  CAS  Google Scholar 

  • Ahmed, M. K., Shaheen, N., Islam, M. S., Habibullah-Al-Mamun, M., Islam, S., Islam, M. M., et al. (2016). A comprehensive assessment of arsenic in commonly consumed foodstuffs to evaluate the potential health risk in Bangladesh. Science of the Total Environment., 544, 125–133. https://doi.org/10.1016/j.scitotenv.2015.11.133.

    Article  CAS  Google Scholar 

  • AgriAs, 2017. Evaluation and management of arsenic contamination in agricultural soil and water. Water JPI, EU (2017–2019).Retrieved from http://projects.gtk.fi/AgriAs/

  • Andrei, S. (2006). Analytical Methods Used for Milk Proteins Separation and Identification (mini review). Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca.Veterinary Medicine, 63(1–2). http://dx.doi.org/https://doi.org/10.15835/buasvmcn-vm:63:1-2:2352

  • ATSDR., . (2007). Toxicological profile for arsenic. Division of Toxicology, Atlanta, GA: Agency for Toxic Substances and Disease Registry.

    Google Scholar 

  • BBS. (2011). Bangladesh Bureau of Statistics. Report of the Household Income and Expenditure Survey (HIES) 2010.

  • Benelam, B., Gibson-Moore, H., & Stanner, S. (2015). Healthy eating for 1–3 year olds: A food-based guide. Nutrition Bulletin., 40(2), 107–117. https://doi.org/10.1111/nbu.12134.

    Article  Google Scholar 

  • Bera, A. K., Rana, T., Das, S., Bhattacharya, D., Bandyopadhyay, S., Pan, D., et al. (2010). Ground water arsenic contamination in West Bengal, India: A risk of sub-clinical toxicity in cattle as evident by correlation between arsenic exposure, excretion and deposition. Toxicology and Industrial Health, 26(10), 709–716. https://doi.org/10.1177/0748233710377775.

    Article  CAS  Google Scholar 

  • Bhat, M. Y., Dar, T. A., & Singh, L. R. (2016). Casein proteins: structural and functional aspects. Milk proteins–from structure to biological properties and health aspects. Rijeka: InTech.

    Google Scholar 

  • Biswas, A., Swain, S., Chowdhury, N. R., Joardar, M., Das, A., Mukherjee, M., & Roychowdhury, T. (2019). Arsenic contamination in Kolkata metropolitan city: Perspective of transportation of agricultural products from arsenic-endemic areas. Environmental Science and Pollution Research, 26(22), 22929–22944. https://doi.org/10.1007/s11356-019-05595-z.

    Article  CAS  Google Scholar 

  • Blood, D. C., Radostits, O. M., & Henderson, J. A. (2000). Veterinary medicine. London: The English Language Book Society. BailliereTindall.

    Google Scholar 

  • Bundschuh, J., Nath, B., Bhattacharya, P., Liu, C. W., Armienta, M. A., Lopez, M. V. M., et al. (2012). Arsenic in the human food chain: The Latin American Perspectives. Science of the Total Environment, 429, 92–106. https://doi.org/10.1016/j.scitotenv.2011.09.069.

    Article  CAS  Google Scholar 

  • Chakraborti, D., Das, B., Rahman, M. M., Chowdhury, U. K., Biswas, B., Goswami, A. B., et al. (2009). Status of groundwater arsenic contamination in the state of West Bengal, India: A 20 year study report. Molecular Nutrition and Food Research, 53(5), 542–551. https://doi.org/10.1002/mnfr.200700517.

    Article  CAS  Google Scholar 

  • Chakraborti, D., Rahman, M. M., Das, B., Nayak, B., Pal, A., Sengupta, M. K., et al. (2013). Groundwater arsenic contamination in Ganga–Meghna–Brahmaputra plain, its health effects and an approach for mitigation. Environmental Earth Sciences, 70(5), 1993–2008. https://doi.org/10.1007/s12665-013-2699-y.

    Article  Google Scholar 

  • Chandan, R. C. (1997). Chapter 1: Properties of milk and its components. Dairy-based ingredients. Minnesota: American Association of Cereal Chemists.

    Book  Google Scholar 

  • Chatterjee, A., Das, D., Mandal, B. K., Chowdhury, T. R., Samanta, G., & Chakraborti, D. (1995). Arsenic in ground water in six districts of West Bengal, India: the biggest arsenic calamity in the world. Part I. Arsenic species in drinking water and urine of the affected people. Analyst, 120, 643–650.

    Article  Google Scholar 

  • Chowdhury, N. R., Das, R., Joardar, M., Ghosh, S., Bhowmick, S., & Roychowdhury, T. (2018a). Arsenic accumulation in paddy plants at different phases of pre-monsoon cultivation. Chemosphere, 210, 987–997. https://doi.org/10.1016/j.chemosphere.2018.07.041.

    Article  CAS  Google Scholar 

  • Chowdhury, N. R., Ghosh, S., Joardar, M., Kar, D., & Roychowdhury, T. (2018b). Impact of arsenic contaminated groundwater used during domestic scale post harvesting of paddy crop in West Bengal: Arsenic partitioning in raw and parboiled whole grain. Chemosphere, 211, 173–184. https://doi.org/10.1016/j.chemosphere.2018.07.128.

    Article  CAS  Google Scholar 

  • Chowdhury, N. R., Das, A., Joardar, M., De, A., Mridha, D., Das, R., et al. (2020a). Flow of arsenic between rice grain and water: Its interaction, accumulation and distribution in different fractions of cooked rice. Science of the Total Environment, 731, 138937. https://doi.org/10.1016/j.scitotenv.2020.138937.

    Article  CAS  Google Scholar 

  • Chowdhury, N. R., Das, A., Mukherjee, M., Swain, S., Joardar, M., De, A., et al. (2020b). Monsoonal paddy cultivation with phase-wise arsenic distribution in exposed and control sites of West Bengal, alongside its assimilation in rice grain. Journal of Hazardous Materials, 400, 123206. https://doi.org/10.1016/j.jhazmat.2020.123206.

    Article  Google Scholar 

  • Cubadda, F., Jackson, B. P., Cottingham, K. L., Van Horne, Y. O., & Kurzius-Spencer, M. (2017). Human exposure to dietary inorganic arsenic and other arsenic species: State of knowledge, gaps and uncertainties. Science of the Total Environment, 579, 1228–1239. https://doi.org/10.1016/j.scitotenv.2016.11.108.

    Article  CAS  Google Scholar 

  • Das, A., Das, S. S., Chowdhury, N. R., Joardar, M., Ghosh, B., & Roychowdhury, T. (2020). Quality and health risk evaluation for groundwater in Nadia district, West Bengal: An approach on its suitability for drinking and domestic purpose. Groundwater for Sustainable Development, 10, 100351. https://doi.org/10.1016/j.gsd.2020.100351.

    Article  Google Scholar 

  • Datta, B. K., Mishra, A., Singh, A., Sar, T. K., Sarkar, S., Bhatacharya, A., et al. (2010). Chronic arsenicosis in cattle with special reference to its metabolism in arsenic endemic village of Nadia district West Bengal India. Science of the Total Environment, 409(2), 284–288. https://doi.org/10.1016/j.scitotenv.2010.10.003.

    Article  CAS  Google Scholar 

  • Datta, B. K., Bhar, M. K., Patra, P. H., Majumdar, D., Dey, R. R., Sarkar, S., et al. (2012). Effect of environmental exposure of arsenic on cattle and poultry in Nadia district, West Bengal. India. Toxicology International, 19(1), 59. https://doi.org/10.4103/0971-6580.94511.

    Article  CAS  Google Scholar 

  • Daus, B., Weiss, H., Mattusch, J., & Wennrich, R. (2006). Preservation of arsenic species in water samples using phosphoric acid–limitations and long-term stability. Talanta, 69(2), 430–434. https://doi.org/10.1016/j.talanta.2005.10.012.

    Article  CAS  Google Scholar 

  • Del, R., & L. M., Garcia-Vargas, G. G., Garcia-Salcedo, J., Sanmiguel, M. F., Rivera, M., Hernandez, M. C., & Cebrian, M. E. . (2002). Arsenic levels in cooked food and assessment of adult dietary intake of arsenic in the Region Lagunera. Mexico. Food and Chemical Toxicology, 40(10), 1423–1431. https://doi.org/10.1016/S0278-6915(02)00074-1.

    Article  Google Scholar 

  • Devi, S. M., Balachandar, V., Lee, S. I., & Kim, I. H. (2014). An outline of meat consumption in the Indian population-A pilot review. Korean Journal for Food Science of Animal Resources, 34(4), 507.

    Article  Google Scholar 

  • EFSA (2009). Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on arsenic in food. EFSA J 7(10), 1351.

  • Eisler, R. (1994). A review of arsenic hazards to plants and animals with emphasis on fishery and wildlife resources. Advances in Environmental Science and Technology, 27, 185–185.

    CAS  Google Scholar 

  • Faires, M. C. (2004). Inorganic arsenic toxicosis in a beef herd. The Canadian Veterinary Journal, 45(4), 329.

    Google Scholar 

  • Fängström, B., Moore, S., Nermell, B., Kuenstl, L., Goessler, W., Grandér, M., et al. (2008). Breast-feeding protects against arsenic exposure in Bangladeshi infants. Environmental Health Perspectives, 116(7), 963–969. https://doi.org/10.1289/ehp.11094.

    Article  CAS  Google Scholar 

  • Fernández, E. F., Martínez, J. H., Martínez, V. S., Moreno, J. V., Collado, L. Y., Hernández, M. C., & Morán, F. R. (2014). Consensus document: Nutritional and metabolic importance of cow’s milk. Nutricion Hospitalaria, 31(1), 92–101.

    Google Scholar 

  • FSSAI. (2006). Akalank’s food safety and standards act, rules and regulations (10th ed., p. 188). New Delhi: Akalank Publication.

    Google Scholar 

  • Gaur, G. K., Kaushik, S. N., & Garg, R. C. (2003). The Gir cattle breed of India-characteristics and present status. Animal Genetic Resources/Resources génétiquesanimales/Recursosgenéticosanimales, 33, 21–29.

    Article  Google Scholar 

  • Ghosh, A., Awal, M. A., Majumder, S., Mostofa, M., Khair, A., Islam, M. Z., & Rao, D. R. (2012). Arsenic in eggs and excreta of laying hens in Bangladesh: A preliminary study. Journal of Health, Population, and Nutrition, 30(4), 383–393. https://doi.org/10.3329/jhpn.v30i4.13290.

    Article  Google Scholar 

  • Ghosh, A., Majumder, S., Awal, M. A., & Rao, D. R. (2013). Arsenic exposure to dairy cows in Bangladesh. Archives of Environmental Contamination and Toxicology, 64(1), 151–159.

    Article  CAS  Google Scholar 

  • Grosse, Y., Lajoie, P., Billard, M., Krewski, D., Rice, J., Baan, R. A., et al. (2019). Development of a database on tumors and tumor sites in humans and in experimental animals for Group 1 agents identified through volume 109 of the IARC Monographs. Journal of Toxicology and Environmental Health, Part B, 22(7–8), 237–243. https://doi.org/10.1080/10937404.2019.1642601.

    Article  CAS  Google Scholar 

  • Gupta, K. K., Aneja, K. R., & Rana, D. (2016). Current status of cow dung as a bioresource for sustainable development. Bioresources and Bioprocessing, 3(1), 1–11. https://doi.org/10.1186/s40643-016-0105-9.

    Article  Google Scholar 

  • Haldar, A., Pal, P., Datta, M., Paul, R., Pal, S. K., Majumdar, D., et al. (2014). Prolificacy and its relationship with age, body weight, parity, previous litter size and body linear type traits in meat-type goats. Asian-Australasian Journal of Animal Sciences, 27(5), 628.

    Article  Google Scholar 

  • Hopps, H. C. (1977). The biologic bases for using hair and nail for analyses of trace elements. Science of the Total Environment, 7(1), 71–89. https://doi.org/10.1016/0048-9697(77)90018-3.

    Article  CAS  Google Scholar 

  • IARC (2012). A review of human carcinogens. Part C: metals, arsenic, dusts, and fibers. IARC monographs on the evaluation of carcinogenic risks to humans. Lyon, World Health Organization. International Agency for Research on Cancer, Volume 100C.

  • International Dairy Federation (1986). Levels of trace elements in milk and milk products. Questionnaire 2386/E. Brussels: IDF.

  • Islam, M. S., Ahmed, M. K., Habibullah-Al-Mamun, M., Islam, K. N., Ibrahim, M., & Masunaga, S. (2014). Arsenic and lead in foods: A potential threat to human health in Bangladesh. Food Additives and Contaminants: Part A, 31(12), 1982–1992. https://doi.org/10.1080/19440049.2014.974686.

    Article  CAS  Google Scholar 

  • Islam, M. S., Ahmed, M. K., Habibullah-Al-Mamun, M., & Eaton, D. W. (2017). Arsenic in the food chain and assessment of population health risks in Bangladesh. Environment Systems and Decisions, 37(3), 344–352.

    Article  Google Scholar 

  • JECFA (2005). Codex general standard for contaminants and toxins in food and feeds. In: 64th meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), JECFA/64/CAC/RCP 49–2001.

  • Joardar, M., Das, A., Mridha, D., De, A., Chowdhury, N. R., & Roychowdhury, T. (2020). Evaluation of acute and chronic arsenic exposure on school children from exposed and apparently control areas of West Bengal. India: Exposure and Health.

    Google Scholar 

  • Joseph, T., Dubey, B., & McBean, E. A. (2015). Human health risk assessment from arsenic exposures in Bangladesh. Science of the Total Environment, 527, 552–560.

    Article  CAS  Google Scholar 

  • Kazi, T. G., Brahman, K. D., Afridi, H. I., Arain, M. B., Talpur, F. N., & Akhtar, A. (2016). The effects of arsenic contaminated drinking water of livestock on its total levels in milk samples of different cattle: Risk assessment in children. Chemosphere, 165, 427–433. https://doi.org/10.1016/j.chemosphere.2016.09.015.

    Article  CAS  Google Scholar 

  • Kicińska, A., Glichowska, P., & Mamak, M. (2019). Micro-and macroelement contents in the liver of farm and wild animals and the health risks involved in liver consumption. Environmental Monitoring and Assessment, 191(3), 132. https://doi.org/10.1007/s10661-019-7274-x.

    Article  CAS  Google Scholar 

  • Kennelly, J. J., Glimm, D. R., & Ozimek, L. (2000). Milk composition in the cow (pp. 1–20). Edmonton, Alberta: Faculty of Extension, University of Alberta.

    Google Scholar 

  • Lakso, J. U., & Peoples, S. A. (1975). Preliminary studies on lead, cadmium and arsenic contents of feed, cattle and food animal origin coming from different farms in Saxony. Journal of Agricultural and Food Chemistry, 23, 674–676.

    CAS  Google Scholar 

  • Liao, C. M., Chen, B. C., Singh, S., Lin, M. C., Liu, C. W., & Han, B. C. (2003). Acute toxicity and bioaccumulation of arsenic in tilapia (Oreochromismossambicus) from a blackfoot disease area in Taiwan. Environmental Toxicology: An International Journal, 18(4), 252–259.

    Article  CAS  Google Scholar 

  • Liao, C. M., Jau, S. F., Chen, W. Y., Lin, C. M., Jou, L. J., Liu, C. W., et al. (2008). Acute toxicity and bioaccumulation of arsenic in freshwater Clam Corbiculafluminea. Environmental Toxicology, 23(6), 702–711.

    Article  CAS  Google Scholar 

  • Mandal, P. (2017). An insight of environmental contamination of arsenic on animal health. Emerging Contaminants, 3(1), 17–22.

    Article  Google Scholar 

  • Mangalgiri, K. P., Adak, A., & Blaney, L. (2015). Organoarsenicals in poultry litter: detection, fate, and toxicity. Environmental International, 75, 68–80.

    Article  CAS  Google Scholar 

  • Mazumder, D. N. G. (2008). Chronic arsenic toxicity & human health. Indian Journal of Medical Resources, 128(4), 436–447.

    Google Scholar 

  • Miranda, M., Lopez-Alonso, M., Castillo, C., Hernández, J., & Benedito, J. L. (2005). Effects of moderate pollution on toxic and trace metal levels in calves from a polluted area of northern Spain. Environmental International, 31(4), 543–548.

    Article  CAS  Google Scholar 

  • NRC. (2001). Arsenic in Drinking Water, 2001 update. Washington, DC: National Academy Press.

    Google Scholar 

  • NRC. (2005). Mineral tolerance of domestic animals (p. 147). Washington, D.C.: Washington National Academy Press.

    Google Scholar 

  • Pal, A., Nayak, B., Das, B., Hossain, M. A., Ahamed, S., & Chakraborti, D. (2007). Additional danger of arsenic exposure through inhalation from burning of cow dung cakes laced with arsenic as a fuel in arsenic affected villages in Ganga-Meghna-Brahmaputra plain. Journal of Environmental Monitoring, 9(10), 1067–1070.

    Article  CAS  Google Scholar 

  • Peoples, S. A. (1964). Arsenic toxicity in cattle. Annals of the New York Academy of Sciences, 111, 644.

    Article  CAS  Google Scholar 

  • Peres, J. M., Bouhallab, S., Bureau, F., Maubois, J. L., Arhan, P., & Bougle, Â. D. (1997). Absorption digestive du ferlie au case-inophosphopeptide 1–25 de la β-caseine.Le. Lait, 77, 433–440.

    Article  CAS  Google Scholar 

  • Rahman, M. A., Hasegawa, H., Rahman, M. M., Miah, M. M., & Tasmin, A. (2008). Arsenic accumulation in rice (Oryza sativa L.): Human exposure through food chain. Ecotoxicology and Environmental Safety, 69(2), 317–324.

    Article  CAS  Google Scholar 

  • Rahman, M. M., Asaduzzaman, M., & Naidu, R. (2013). Consumption of arsenic and other elements from vegetables and drinking water from an arsenic-contaminated area of Bangladesh. Journal of Hazardous Materials, 262, 1056–1063.

    Article  CAS  Google Scholar 

  • Rahaman, S., Sinha, A. C., Pati, R., & Mukhopadhyay, D. (2013). Arsenic contamination: a potential hazard to the affected areas of West Bengal India. Environmental Geochemistry and Health, 35(1), 119–132.

    Article  CAS  Google Scholar 

  • Raikwar, M. K., Kumar, P., Singh, M., & Singh, A. (2008). Toxic effect of heavy metals in livestock health. Veterinary World, 1(1), 28–30.

    Article  Google Scholar 

  • Rana, T., Bera, A. K., Bhattacharya, D., Das, S., Pan, D., & Das, S. K. (2012). Chronic arsenicosis in goats with special reference to its exposure, excretion and deposition in an arsenic contaminated zone. Environmental Toxicology and Pharmacology, 33(2), 372–376.

    Article  CAS  Google Scholar 

  • Rana, T., Bera, A. K., Das, S., Bhattacharya, D., Pan, D., & Das, S. K. (2014a). Subclinical arsenicosis in cattle in arsenic endemic area of West Bengal, India. Toxicology and Industrial Health, 30(4), 328–335.

    Article  CAS  Google Scholar 

  • Rana, T., Bera, A. K., Mondal, D. K., Das, S., Bhattacharya, D., Samanta, S., et al. (2014b). Arsenic residue in the products and by-products of chicken and ducks: A possible concern of avian health and environmental hazard to the population in West Bengal, India. Toxicology and Industrial Health, 30(6), 576–580.

    Article  CAS  Google Scholar 

  • Rogowska, K. A., Monkiewicz, J., & Grosicki, A. (2009). Lead, cadmium, arsenic, copper, and zinc contents in the hair of cattle living in the area contaminated by a copper smelter in 2006–2008. Bulletin of the Veterinary Institute in Pulawy, 53, 703–706.

    Google Scholar 

  • Roy, D., Kumar, D. T., & Vaswani, S. (2013). Arsenic: it’s extent of pollution and toxicosis: An animal perspective. Veterinary World, 6(1), 53–58.

    Article  Google Scholar 

  • Roychowdhury, T. (2008). Impact of sedimentary arsenic through irrigated groundwater on soil, plant, crops and human continuum from Bengal delta: special reference to raw and cooked rice. Food and Chemical Toxicology, 46(8), 2856–2864. https://doi.org/10.1016/j.fct.2008.05.019.

    Article  CAS  Google Scholar 

  • Roychowdhury, T. (2010). Groundwater arsenic contamination in one of the 107 arsenic-affected blocks in West Bengal, India: Status, distribution, health effects and factors responsible for arsenic poisoning. International Journal of Hygiene and Environmental Health, 213(6), 414–427. https://doi.org/10.1016/j.ijheh.2010.09.003.

    Article  CAS  Google Scholar 

  • Sand, S., Concha, G., Öhrvik, V., & Abramsson, L. (2015a). Inorganic arsenic in rice and rice products on the Swedish market 2015. Part 2–Risk Assessment, Livsmedelsverket. National Food Agency, Livsmedelsverket (rapport nr 16/2015).

  • Sand, S., Bjerselius, R., Busk, L., Eneroth, H., Färnstrand, J. S., & Lindqvist, R. (2015b). The risk thermometer–A tool for risk comparison. National Food Agency (Livsmedelsverket) home page (2017–11–09): https://www.livsmedelsverket.se/globalassets/rapporter/2015/the-risk-thermometer. Pdf Rapport, 8–2015.

  • Sarkar, P., Ray, P. R., Ghatak, P. K., & Sen, M. (2016). Arsenic concentration in water, rice straw and cow milk–a micro level study at Chakdaha and Haringhata block of West Bengal. Indian Journal of Dairy Sciences, 69(6), 676–679.

    Google Scholar 

  • Sattar, A., Xie, S., Hafeez, M. A., Wang, X., Hussain, H. I., Iqbal, Z., et al. (2016). Metabolism and toxicity of arsenicals in mammals. Environmental Toxicology and Pharmacology, 48, 214–224. https://doi.org/10.1016/j.etap.2016.10.020.

    Article  CAS  Google Scholar 

  • Selby, L. A., Case, A. A., Dorn, C. R., & Wagstaff, D. J. (1974). Public health hazards associated with arsenic poisoning in cattle. Journal of the American Veterinary Medical Association, 165(11), 1010–1014.

    CAS  Google Scholar 

  • Selby, L. A., Case, A. A., Osweiler, G. D., & Hayes, J. H. M. (1977). Epidemiology and toxicology of arsenic poisoning in domestic animals. Environmental Health Perspectives, 19, 183–189. https://doi.org/10.1289/ehp.7719183.

    Article  CAS  Google Scholar 

  • Shaheen, N., Ahmed, M. K., Islam, M. S., Habibullah-Al-Mamun, M., Tukun, A. B., Islam, S., & Rahim, A. T. M. (2016). Health risk assessment of trace elements via dietary intake of ‘non-piscine protein source’ foodstuffs (meat, milk and egg) in Bangladesh. Environmental Science and Pollution Research, 23(8), 7794–7806.

    Article  CAS  Google Scholar 

  • Signes-Pastor, A. J., Mitra, K., Sarkhel, S., Hobbes, M., Burló, F., De Groot, W. T., & Carbonell-Barrachina, A. A. (2008). Arsenic speciation in food and estimation of the dietary intake of inorganic arsenic in a rural village of West Bengal, India. Journal of Agriculture Food and Chemistry, 56(20), 9469–9474. https://doi.org/10.1021/jf801600j.

    Article  CAS  Google Scholar 

  • Sigrist, M., Beldoménico, H., & Repetti, M. R. (2010). Evaluation of the influence of arsenical livestock drinking waters on total arsenic levels in cow’s raw milk from Argentinean dairy farms. Food Chemistry, 121(2), 487–491. https://doi.org/10.1016/j.foodchem.2009.12.069.

    Article  CAS  Google Scholar 

  • Tokunaga, H., Roychowdhury, T., Uchino, T., & Ando, M. (2005). Urinary arsenic species in an arsenic-affected area of West Bengal, India (part III). Applied Organometallic Chemistry, 19, 246–253. https://doi.org/10.1002/aoc.791.

    Article  CAS  Google Scholar 

  • USEPA (1998). Arsenic, inorganic. United States Environmental Protection Agency, Integrated Risk Information System (IRIS), (CASRN 744038–2). http://www.epa.gov/iris/subst/0278.html.

  • USEPA (2005). Guidelines for carcinogen risk assessment. Risk Assessment Forum, Washington, DC, EPA/630/P-03/001F.

  • Vahter, M. (1994). Species differences in the metabolism of arsenic. Environment Geochemistry & Health, 16, 171–179.

    Google Scholar 

  • Vahter, M. (2002). Mechanisms of arsenic biotransformation. Toxicology, 181, 211–217. https://doi.org/10.1016/S0300-483X(02)00285-8.

    Article  Google Scholar 

  • Vahter, M., & Concha, G. (2001). Role of metabolism in arsenic toxicity. Pharmacology and Toxicology, 89(1), 1–5. https://doi.org/10.1111/j.1600-0773.2001.890101.x.

    Article  CAS  Google Scholar 

  • Vegarud, G. E., Langsrud, T., & Svenning, C. (2000). Mineral-binding milk proteins and peptides: occurrence, biochemical and technological characteristics. British Journal of Nutrition, 84(1), S91–S98.

    Article  CAS  Google Scholar 

  • Ventura-Lima, J., Bogo, M. R., & Monserrat, J. M. (2011). Arsenic toxicity in mammals and aquatic animals: a comparative biochemical approach. Ecotoxicology and Environmental Safety, 74(3), 211–218. https://doi.org/10.1016/j.ecoenv.2010.11.002.

    Article  CAS  Google Scholar 

  • Walstra, P. (1999). Casein sub-micelles: do they exist? International Dairy Journal, 9(3–6), 189–192. https://doi.org/10.1016/S0958-6946(99)00059-X.

    Article  CAS  Google Scholar 

  • WHO, (2011).Evaluation of certain contaminants in food. Seventy second report of the joint FOA/WHO expert committee on food additives, WHO technical report series No. 959. World Health Organization (WHO), Geneva.

  • Wilson, R. H., & Lewis, H. B. (1927). The cystine content of hair and other epidermal tissues. Journal of Biological Chemistry, 73(2), 543–553.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We acknowledge the help of ‘field workers’, local farmers and villagers for collection and provide the required samples and related information to carry forward the study. Financial supports from “Department of Science & Technology’, Government of West Bengal (research project grant Memo No. 262(Sanc.)/ST/P/S&T/1G-64/2017, dated 25/3/2018), and Inter-University Research Project, RUSA (R-11/1092/19, dated 06/08/2019) are highly acknowledged.

Funding

This research was funded by Department of Science & Technology (DST), Government of West Bengal (Research Project Grant Memo No. 262(Sanc.)/ST/P/S&T/1G-64/2017, dated 25/3/2018), and Inter-University Research Project, RUSA (R-11/1092/19, dated 06/08/2019).

Author information

Authors and Affiliations

Authors

Contributions

Antara Das was involved in Research planning, analytical work, statistical presentation, initial draft preparation and revision work. Madhurima Joardar was involved in analysis, statistical presentation and draft checking. Nilanjana Roy Chowdhury was involved in statistical presentation and draft checking. Deepanjan Mridha was involved in statistical presentation and draft checking. Ayan De was involved in field survey, collection of samples and information from fields. Tarit Roychowdhury overall supervised the entire research study and manuscript revision.

Corresponding author

Correspondence to Tarit Roychowdhury.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interests

Availability of data and material

It can be shared as per the requirement.

Consent for publication

All the authors have agreed to publish this work in this well-known journal and no part of this manuscript is either published earlier, or under consideration anywhere.

Ethical approval

The health guideline for animal experiment has been followed and all procedures performed in this study involving animal participants were in accordance with the ethical standards of the institute.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 259 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Joardar, M., Chowdhury, N.R. et al. Arsenic toxicity in livestock growing in arsenic endemic and control sites of West Bengal: risk for human and environment. Environ Geochem Health 43, 3005–3025 (2021). https://doi.org/10.1007/s10653-021-00808-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00808-2

Keywords

Navigation