Skip to main content

Advertisement

Log in

Health effect and risk assessment of the populations exposed to different arsenic levels in drinking water and foodstuffs from four villages in arsenic endemic Gaighata block, West Bengal, India

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Health exposure and perception of risk assessment have been evaluated on the populations exposed to different arsenic levels in drinking water (615, 301, 48, 20 µg/l), rice grain (792, 487, 588, 569 µg/kg) and vegetables (283, 187, 238, 300 µg/kg) from four villages in arsenic endemic Gaighata block, West Bengal. Dietary arsenic intake rates for the studied populations from extremely highly, highly, moderately, and mild arsenic-exposed areas were 56.03, 28.73, 11.30, and 9.13 μg/kg bw/day, respectively. Acute and chronic effects of arsenic toxicity were observed in ascending order from mild to extremely highly exposed populations. Statistical interpretation using ‘ANOVA’ proves a significant relationship between drinking water and biomarkers, whereas “two-tailed paired t test” justifies that the consumption of arsenic-contaminated dietary intakes is the considerable pathway of health risk exposure. According to the risk thermometer (SAMOE), drinking water belongs to risk class 5 (extremely highly and highly exposed area) and 4 (moderately and mild exposed area) category, whereas rice grain and vegetables belong to risk class 5 and 4, respectively, for all the differently exposed populations. The carcinogenic (ILCR) and non-carcinogenic risks (HQ) through dietary intakes for adults were much higher than the recommended threshold level, compared to the children. Supplementation of arsenic-safe drinking water and nutritional food is strictly recommended to overcome the severe arsenic crisis.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

It can be shared as per the requirement.

References

  • Ahamed, S., Sengupta, M. K., Mukherjee, A., Hossain, M. A., Das, B., Nayak, B., et al. (2006a). Arsenic groundwater contamination and its health effects in the state of Uttar Pradesh (UP) in upper and middle Ganga plain, India: a severe danger. Science of the Total Environment, 370, 310–322.

    Article  CAS  Google Scholar 

  • Ahamed, S., Sengupta, M. K., Mukherjee, S. C., Pati, S., Mukherjee, A., Rahman, M. M., et al. (2006b). An eight-year study report on arsenic contamination in groundwater and health effects in Eruani village, Bangladesh and an approach for its mitigation. Journal of Health Population and Nutrition, 24, 129–141.

    Google Scholar 

  • Arain, M. B., Kazi, T. G., Baig, J. A., Jamali, M. K., Afridi, H. I., Shah, A. Q., et al. (2009). Determination of arsenic levels in lake water, sediment, and foodstuff from selected area of Sindh, Pakistan: estimation of daily dietary intake. Food and Chemical Toxicology, 47(1), 242–248.

    Article  CAS  Google Scholar 

  • Arnold, H. L., Odam, R. B., & James, W. D. (1990). Disease of the skin. Clinical Dermatology (pp. 121–122). Philadelphia: W.B. Saunders.

    Google Scholar 

  • Bae, S., Kamynina, E., Farinola, A. F., Caudill, M. A., Stover, P. J., Cassano, P. A., et al. (2017). Provision of folic acid for reducing arsenic toxicity in arsenic exposed children and adults. The Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.CD012649.

    Article  Google Scholar 

  • Baig, J. A., Kazi, T. G., Mustafa, M. A., Solangi, I. B., Mughal, M. J., & Afridi, H. I. (2016). Arsenic exposure in children through drinking water in different districts of Sindh, Pakistan. Biological Trace Element Research, 173(1), 35–46.

    Article  CAS  Google Scholar 

  • Biswas, A., Swain, S., Chowdhury, N. R., Joardar, M., Das, A., Mukherjee, M., & Roychowdhury, T. (2019). Arsenic contamination in Kolkata metropolitan city: perspective of transportation of agricultural products from arsenic-endemic areas. Environmental Science and Pollution Research, 26, 22929–22944.

    Article  CAS  Google Scholar 

  • Bozack, A. K., Saxena, R., & Gamble, M. V. (2018). Nutritional influences on one-carbon metabolism: Effects on arsenic methylation and toxicity. Annual Review of Nutrition, 38, 401–429.

    Article  CAS  Google Scholar 

  • Brahman, K. D., Kazi, T. G., Afridi, H. I., Baig, J. A., Arain, S. S., Talpur, F. N., et al. (2016). Exposure of children to arsenic in drinking water in the Tharparkar region of Sindh, Pakistan. Science of the Total Environment, 544, 653–660.

    Article  CAS  Google Scholar 

  • Buchet, J. P., Lauwerys, R., & Roels, H. (1981). Comparison of the urinary excretion of arsenic metabolites after a single oral dose of sodium arsenite, monomethylarsonate, or dimethylarsinate in man. International Archives of Occupational and Environmental Health, 48(1), 71–79.

    Article  CAS  Google Scholar 

  • Chakraborti, D., Mukherjee, S. C., Pati, S., Sengupta, M. K., Rahman, M. M., Chowdhury, U. K., et al. (2003). Arsenic groundwater contamination in middle ganga plain, Bihar, India: a future danger? Environmental Health Perspectives, 111, 1194–1201.

    Article  CAS  Google Scholar 

  • Chakraborti, D., Das, B., Rahman, M. M., Chowdhury, U. K., Biswas, B. K., Goswami, A. B., et al. (2009). Status of groundwater arsenic contamination in the state of West Bengal, India: a 20-year study report. Molecular Nutrition and Food Research, 53, 542–551.

    Article  CAS  Google Scholar 

  • Chakraborti, D., Rahman, M. M., Das, B., Nayak, B., Pal, A., Sengupta, M. K., et al. (2013). Groundwater arsenic contamination in Ganga–Meghna–Brahmaputra plain, its health effects and an approach for mitigation. Environmental Earth Science, 70(5), 1993–2008.

    Article  Google Scholar 

  • Chakraborti, D., Rahman, M. M., Ahamed, S., Dutta, R. N., Pati, S., & Mukherjee, S. C. (2016a). Arsenic groundwater contamination and its health effects in Patna district (capital of Bihar) in the middle Ganga plain, India. Chemosphere, 152, 520–529.

    Article  CAS  Google Scholar 

  • Chakraborti, D., Rahman, M. M., Ahamed, S., Dutta, R. N., Pati, S., & Mukherjee, S. C. (2016b). Arsenic groundwater contamination and its induced health effects in Shahpur block, Bhojpur district, Bihar state, India: Risk evaluation. Environmental Science and Pollution Research, 23(10), 9492–9502.

    Article  CAS  Google Scholar 

  • Chakraborti, D., Singh, S., Rahman, M. M., Dutta, R., Mukherjee, S., Pati, S., & Kar, P. (2018). Groundwater arsenic contamination in the Ganga River Basin: A future health danger. International Journal of Environmental Research and Public Health, 15(2), 180–198. https://doi.org/10.3390/ijerph15020180.

    Article  CAS  Google Scholar 

  • Chatterjee, D., Halder, D., Majumder, S., Biswas, A., Nath, B., Bhattacharya, P., et al. (2010). Assessment of arsenic exposure from groundwater and rice in Bengal Delta Region, West Bengal, India. Water Research, 44(19), 5803–5812.

    Article  CAS  Google Scholar 

  • Chatterjee, D., Bandyopadhyay, A., Sarma, N., Basu, S., Roychowdhury, T., Roy, S. S., & Giri, A. K. (2018). Role of microRNAs in senescence and its contribution to peripheral neuropathy in the arsenic exposed population of West Bengal, India. Environmental Pollution, 233, 596–603.

    Article  CAS  Google Scholar 

  • Chattopadhyay, A., Singh, A. P., Singh, S. K., Barman, A., Patra, A., Mondal, B. P., & Banerjee, K. (2020). Spatial variability of arsenic in Indo-Gangetic basin of Varanasi and its cancer risk assessment. Chemosphere, 238, 124623.

    Article  CAS  Google Scholar 

  • Chikkanna, A., Mehan, L., Sarath, P. K., & Ghosh, D. (2019). Arsenic exposures, poisoning, and threat to human health: Arsenic affecting human health. In P. Papadopoulou, C. Marouli, & A. Misseyanni (Eds.), Environmental Exposure and Human Health Challenges (pp. 86–105). IGI Global: IGI Global.

    Chapter  Google Scholar 

  • Chowdhury, N. R., Das, R., Joardar, M., Ghosh, S., Bhowmick, S., & Roychowdhury, T. (2018a). Arsenic accumulation in paddy plants at different phases of pre-monsoon cultivation. Chemosphere, 210, 987–997.

    Article  CAS  Google Scholar 

  • Chowdhury, N. R., Ghosh, S., Joardar, M., Kar, D., & Roychowdhury, T. (2018b). Impact of arsenic contaminated groundwater used during domestic scale post harvesting of paddy crop in West Bengal: Arsenic partitioning in raw and parboiled whole grain. Chemosphere, 211, 173–184.

    Article  CAS  Google Scholar 

  • Chowdhury, N. R., Das, A., Joardar, M., De, A., Mridha, D., Das, R., et al. (2020a). Flow of arsenic between rice grain and water: Its interaction, accumulation and distribution in different fractions of cooked rice. Science of the Total Environment, 731, 138937.

    Article  CAS  Google Scholar 

  • Chowdhury, N. R., Das, A., Mukherjee, M., Swain, S., Joardar, M., De, A., et al. (2020b). Monsoonal paddy cultivation with phase-wise arsenic distribution in exposed and control sites of West Bengal, alongside its assimilation in rice grain. Journal of Hazardous Materials, 400, 123206.

    Article  Google Scholar 

  • Chowdhury, U. K., Biswas, B. K., Roychowdhury, T., Samanta, G., Mandal, B. K., Basu, G. K., et al. (2000). Groundwater arsenic contamination in Bangladesh and West Bengal-India. Environmental Health Perspectives, 108, 393–397.

    Article  CAS  Google Scholar 

  • Chowdhury, U. K., Rahman, M. M., Sengupta, M. K., Lodh, D., Chanda, C. R., Roy, S., et al. (2003). Pattern of excretion of arsenic compounds [arsenite, arsenate, MMA (V), DMA (V)] in urine of children compared to adults from an arsenic exposed area in Bangladesh. Journal of Environmental Science and Health, Part A, 38(1), 87–113.

    Article  CAS  Google Scholar 

  • Das, H. K., Mitra, A. K., Sengupta, P. K., Hossain, A., Islam, F., & Rabbani, G. H. (2004). Arsenic concentrations in rice, vegetables, and fish in Bangladesh: a preliminary study. Environmental International, 30(3), 383–387.

    Article  CAS  Google Scholar 

  • Das, B., Rahman, M. M., Nayak, B., Pal, A., Chowdhury, U. K., Mukherjee, S. C., et al. (2009). Groundwater arsenic-contamination, its health effects and approach for mitigation in West Bengal, India and Bangladesh. Water Quality Exposure and Health, 1, 5–21.

    Article  CAS  Google Scholar 

  • Das, A., Das, S. S., Chowdhury, N. R., Joardar, M., Ghosh, B., & Roychowdhury, T. (2020). Quality and health risk evaluation for groundwater in Nadia district, West Bengal: An approach on its suitability for drinking and domestic purpose. Groundwater Sustainable Development, 10, 100351. https://doi.org/10.1016/j.gsd.2020.100351.

    Article  Google Scholar 

  • European Commission (2015). Commission Regulation 2015/1006 of 25 June 2015 amending Regulation (EC) No 1881/2006 as regards maximum levels of inorganic arsenic in foodstuffs.

  • Farmer, J. G., & Johnson, L. R. (1990). Assessment of occupational exposure to inorganic arsenic based on urinary concentrations and speciation of arsenic. British Journal of Industrial Medicine, 47, 342–348.

    CAS  Google Scholar 

  • Farzan, S. F., Karagas, M. R., & Chen, Y. (2013). In utero and early life arsenic exposure in relation to long-term health and disease. Toxicology and Applied Pharmacology, 272(2), 384–390.

    Article  CAS  Google Scholar 

  • Goswami, R., Kumar, M., Biyani, N., & Shea, P. J. (2020). Arsenic exposure and perception of health risk due to groundwater contamination in Majuli (river island), Assam, India. Environmental Geochemistry and Health, 42(2), 443–460.

    Article  CAS  Google Scholar 

  • Halder, D., Bhowmick, S., Biswas, A., Mandal, U., Nriagu, J., GuhaMazumdar, D. N., et al. (2012). Consumption of brown rice: A potential pathway for arsenic exposure in rural Bengal. Environmental Science and Technology, 46(7), 4142–4148.

    Article  CAS  Google Scholar 

  • Halder, D., Biswas, A., Slejkovec, Z., Chatterjee, D., Nriagu, J., Jacks, G., & Bhattacharya, P. (2014). Arsenic species in raw and cooked rice: Implications for human health in rural Bengal. Science of the Total Environment, 497, 200–208.

    Article  CAS  Google Scholar 

  • Hall, M., Chen, Y., Ahsan, H., Slavkovich, V., Van Geen, A., Parvez, F., & Graziano, J. (2006). Blood arsenic as a biomarker of arsenic exposure: results from a prospective study. Toxicology, 225(2–3), 225–233.

    Article  CAS  Google Scholar 

  • Harvey, C. F., Swartz, C. H., Badruzzaman, A. B. M., Keon-Blute, N., Yu, W., Ali, M. A., et al. (2002). Arsenic mobility and groundwater extraction in Bangladesh. Science, 298(5598), 1602–1606.

    Article  CAS  Google Scholar 

  • Huq, S. I., & Naidu, R. (2003). Arsenic in groundwater of Bangladesh: contamination in the food chain. In M. F. Ahmed (Ed.), Arsenic Contamination: Bangladesh Perspective (pp. 203–226). Dhaka: ITN-Bangladesh: Bangladesh University of Engineering and Technology.

  • IARC (2012). Arsenic, metals, fibres, and dusts, Volume 100C. A Review of Human Carcinogens. http://monographs.iarc.fr/ENG/Monographs/vol100C/mono100C.pdf.

  • Ioanid, N., Bors, G., & Popa, I. (1961). BeiträgezurKenntnis des normalenArsengehaltesronNägeln und des Gehaltes in den Fällen von Arsenpolyneuritis. International Journal of Legal Medicine, 52(1), 90–94.

    Article  CAS  Google Scholar 

  • Islam, F. S., Gault, A. G., Boothman, C., Polya, D. A., Charnok, J. M., Chatterjee, D., & Lloyd, J. R. (2004). Role of metal reducing bacteria in arsenic release from Bengal delta sediments. Nature, 430, 68–71.

    Article  CAS  Google Scholar 

  • Joardar, M., Das, A., Mridha, D., De, A., Chowdhury, N. R., & Roychowdhury, T. (2020). Evaluation of acute and chronic arsenic exposure on school children from exposed and apparently control areas of West Bengal, India. Exposure and Health. https://doi.org/10.1007/s12403-020-00360-x.

    Article  Google Scholar 

  • Joseph, T., Dubey, B., & McBean, E. A. (2015). Human health risk assessment from arsenic exposures in Bangladesh. Science of the Total Environment, 527, 552–560. https://doi.org/10.1016/j.scitotenv.2015.05.053.

    Article  CAS  Google Scholar 

  • Kazi, T. G., Brahman, K. D., Afridi, H. I., Arain, M. B., Talpur, F. N., & Akhtar, A. (2016). The effects of arsenic contaminated drinking water of livestock on its total levels in milk samples of different cattle: Risk assessment in children. Chemosphere, 165, 427–433.

    Article  CAS  Google Scholar 

  • Khan, S., Farooq, R., Shahbaz, S., Khan, M. A., & Sadique, M. (2009). Health risk assessment of heavy metals for population via consumption of vegetables. World Applied Science Journal, 6(12), 1602–1606.

    CAS  Google Scholar 

  • Kippler, M., Skröder, H., Rahman, S. M., Tofail, F., & Vahter, M. (2016). Elevated childhood exposure to arsenic despite reduced drinking water concentrations-a longitudinal cohort study in rural Bangladesh. Environmental International, 86, 119–125.

    Article  CAS  Google Scholar 

  • Kumarathilaka, P., Seneweera, S., Ok, Y. S., Meharg, A., & Bundschuha, J. (2019). Arsenic in cooked rice foods: Assessing health risks and mitigation options. Environmental International, 127, 584–591.

    Article  CAS  Google Scholar 

  • Maity, J. P., Nath, B., Kar, S., Chen, C. Y., Banerjee, S., Jean, J. S., et al. (2012). Arsenic-induced health crisis in peri-urban Moyna and Ardebok villages, West Bengal, India: An exposure assessment study. Environmental Geochemistry and Health, 34(5), 563–574.

    Article  CAS  Google Scholar 

  • Mandal, B. K., Roychowdhury, T., Samanta, G., Basu, G. K., Chowdhury, P. P., Chanda, C. R., et al. (1996). Arsenic in groundwater in seven districts of West Bengal, India–the biggest arsenic calamity in the world. Current Science, 70, 976–986.

    CAS  Google Scholar 

  • Mandal, B. K., Roychowdhury, T., Samanta, G., Basu, G. K., Chowdhury, P. P., Chanda, C. R., et al. (1997). Chronic arsenic toxicity in West Bengal. Current Science, 72, 114–117.

    CAS  Google Scholar 

  • Mandal, B. K., Roychowdhury, T., Samanta, G., Mukherjee, D. P., Chanda, C. R., Saha, K. C., & Chakraborti, D. (1998). Impact of safe water for drinking and cooking on five arsenic-affected families for 2 years in West Bengal, India. Science of the Total Environment, 218(2–3), 185–201.

    Article  CAS  Google Scholar 

  • Mandal, U., Singh, P., Kundu, A. K., Chatterjee, D., Nriagu, J., & Bhowmick, S. (2019). Arsenic retention in cooked rice: Effects of rice type, cooking water, and indigenous cooking methods in West Bengal, India. Science of the Total Environment, 648, 720–727.

    Article  CAS  Google Scholar 

  • Meharg, A. A., Scrimgeour, C., Hossain, S. A., Fuller, K., Cruickshank, K., Williams, P. N., & Kinniburg, D. G. (2006a). Codeposition of organic carbon and arsenic in Bengal delta aquifers. Environmental Science and Technology, 40(16), 4928–4935.

    Article  CAS  Google Scholar 

  • Meharg, A.A., Adomaco, E., Lawgali, Y., Deacon, C., & Williams, P. (2006b). Food Standards Agency Contract C101045: Levels of arsenic in rice: literature review. https://www.food.gov.uk/sites/default/files/169-1-605

  • Meharg, A. A., Williams, P. N., Adomako, E., Lawgali, Y. Y., Deacon, C., Villada, A., et al. (2009). Geographical variation in total and inorganic arsenic content of polished (white) rice. Environmental Science and Technology, 43(5), 1612–1617.

    Article  CAS  Google Scholar 

  • Milton, A. H., Hasan, Z., Shahidullah, S. M., Sharmin, S., Jakariya, M. D., Rahman, M., et al. (2004). Association between nutritional status and arsenicosis due to chronic arsenic exposure in Bangladesh. International Journal of Environmental Health Research, 14(2), 99–108.

    Article  CAS  Google Scholar 

  • Milton, A. H., Shahidullah, S. M., Smith, W., Hossain, K. S., Ha-san, Z., & Ahmed, K. T. (2010). Association between chronic arsenic exposure and nutritional status among the women of child bearing age: a case-control study in Bangladesh. International Journal Environmental Research and Public Health, 7, 2811–2821.

    Article  CAS  Google Scholar 

  • NRC. (1999). Arsenic in drinking water. Washington: National Academy Press.

    Google Scholar 

  • NRC. (2001). Arsenic in drinking water: 2001 update Subcommittee on arsenic in drinking water. Washington: National Academic Press.

    Google Scholar 

  • Polya, D., & Charlet, L. (2009). Rising arsenic risk? Nature Geoscience, 2, 383–384.

    Article  CAS  Google Scholar 

  • Povorinskaya, O. A., & Karpenko, O. M. (2009). Macro and trace element status of patients of the elder age groups. Bulletin of Experimental Biology and Medicine, 147, 473–475.

    Article  CAS  Google Scholar 

  • Prakash, C., Soni, M., & Kumar, V. (2016). Mitochondrial oxidative stress and dysfunction in arsenic neurotoxicity: A review. Journal of Applied Toxicology, 36(2), 179–188.

    Article  CAS  Google Scholar 

  • Rahman, M. M., Mandal, B. K., Roychowdhury, T., Sengupta, M. K., Chowdhury, U. K., Lodh, D., et al. (2003). Arsenic groundwater contamination and sufferings of people in North 24-Parganas, one of the nine arsenic affected districts of West Bengal, India. Journal Environmental Science and Health (A), 28, 25–59.

    Article  CAS  Google Scholar 

  • Rahman, M. M., Sengupta, M. K., Ahamed, S., Chowdhury, U. K., Lodh, D., Hossain, A., Das, B., Roy, N., et al. (2005). Arsenic contamination of groundwater and its health impact on residents in a village in West Bengal, India. Bulletin of World Health Organization, 83(1), 49–57.

    Google Scholar 

  • Rahman, M. M., Sengupta, M. K., Ahamed, S., Chowdhury, U. K., Lodh, D., Hossain, M. A., Das, B., Saha, K. C., et al. (2005). Status of groundwater arsenic contamination and human suffering in a gram panchayet (cluster of villages) in Murshidabad, one of the nine arsenic-affected districts in West Bengal. Indian Journal of Water and Health, 3(3), 283–296.

    Article  CAS  Google Scholar 

  • Rahman, M. A., Hasegawa, H., Rahman, M. M., Rahman, M. A., & Miah, M. A. M. (2007). Accumulation of arsenic in tissues of rice plant (Oryzasativa L.) and its distribution in fractions of rice grain. Chemosphere, 69(6), 942–948.

    Article  CAS  Google Scholar 

  • Rahman, M. A., Rahman, I. M. M., & Hasegawa, H. (2011). Cooking effects on dietary exposure to arsenic from rice and vegetables. In J. O. Nriagu (Ed.), Encyclopedia of environmental health (pp. 828–833). Burlington: Elsevier Science.

    Chapter  Google Scholar 

  • Rahaman, S., Sinha, A. C., Pati, R., & Mukhopadhyay, D. (2013). Arsenic contamination: A potential hazard to the affected areas of West Bengal, India. Environmental Geochemistry and Health, 35(1), 119–132. https://doi.org/10.1007/s10653-012-9460-4.

    Article  CAS  Google Scholar 

  • Ramadas, S., Sharma, I., & Poswal, R. S. (2012). Exploring the performance of wheat production in India. Journal of Wheat Research, 4(2), 37–44.

    Google Scholar 

  • RGI (2003). Registrar General of India, SRS analytical studies, Report No. 3, New Delhi.

  • Rasheed, H., Kay, P., Slack, R., & Gong, Y. Y. (2019). Assessment of arsenic species in human hair, toenail and urine and their association with water and staple food. Journal of Exposure Science and Environmental Epidemiology, 29, 624–632.

    Article  CAS  Google Scholar 

  • Roychowdhury, T. (2008). Impact of sedimentary arsenic through irrigated groundwater on soil, plant, crops and human continuum from Bengal delta: Special reference to raw and cooked rice. Food and Chemical Toxicology, 46(8), 2856–2864.

    Article  CAS  Google Scholar 

  • Roychowdhury, T. (2008). Influence of several factors during collection and preservation prior to analysis of arsenic in groundwater: A case study from West Bengal India. Journal of International Environmental Application and Science, 3(1), 1–20.

    CAS  Google Scholar 

  • Roychowdhury, T. (2010). Groundwater arsenic contamination in one of the 107 arsenic-affected blocks in West Bengal, India: Status, distribution, health effects and factors responsible for arsenic poisoning. International Journal of Hygiene and Environmental Health, 213(6), 414–427.

    Article  CAS  Google Scholar 

  • Roychowdhury, T., Uchino, T., Tokunaga, H., & Ando, M. (2002). Survey of arsenic in food composites from an arsenic-affected area of West Bengal, India. Food and Chemical Toxicology, 40, 1611–1621.

    Article  CAS  Google Scholar 

  • Roychowdhury, T., Tokunaga, H., & Ando, M. (2003). Survey of arsenic and other heavy metals in food composites and drinking water and estimation of dietary intake by the villagers from an arsenic-affected area of West Bengal, India. Science of the Total Environment, 308(1–3), 15–35.

    Article  CAS  Google Scholar 

  • Roychowdhury, T., Tokunaga, H., Uchino, T., & Ando, M. (2005). Effect of arsenic contaminated irrigation water on agricultural land soil and plants in West Bengal, India. Chemosphere, 58(6), 799–810. https://doi.org/10.1016/j.chemosphere.2004.08.098.

    Article  CAS  Google Scholar 

  • Samanta, G., Sharma, R., Roychowdhury, T., & Chakraborti, D. (2004). Arsenic and other elements in hair, nails, and skin-scales of arsenic victims in West Bengal, India. Science of the Total Environment, 326(1–3), 33–47.

    Article  CAS  Google Scholar 

  • Sampson, M. L., Bostick, B., Chiew, H., Hangan, J. M., & Shantz, A. (2008). Arsenicosis in Cambodia: Case studies and policy response. Applied Geochemistry, 23, 2976–2985.

    Article  CAS  Google Scholar 

  • Santra, S. C., Samal, A. C., Bhattacharya, P., Banerjee, S., Biswas, A., & Majumdar, J. (2013). Arsenic in food chain and community health risk: a study in Gangetic West Bengal. Procedia Environmental Science, 18, 2–13.

    Article  CAS  Google Scholar 

  • Sand, S., Concha, G., Öhrvik, V., & Abramsson, L. (2015a). Inorganic Arsenic in Rice and Rice Products on the Swedish Market 2015. Part 2–Risk Assessment, Livsmedelsverket, National Food Agency, Livsmedelsverket rapport nr 16/2015.

  • Sand, S., Bjerselius, R., Busk, L., Eneroth, H., Sanner-Färnstrand, J., & Lindqvist, R. (2015b). The Risk Thermometer - a tool for risk comparison. Swedish National Food Agency report serial number 8.

  • Sarma, S. D., Hussain, A., & Sarma, J. D. (2017). Advances made in understanding the effects of arsenic exposure on humans. Current Science, 112(10), 2008.

    Article  CAS  Google Scholar 

  • Schoof, R. A., Yost, L. J., Eickhoff, J., Crecelius, E. A., Cragin, D. W., Meacher, D. M., & Menzel, D. B. (1999). A market basket survey of inorganic arsenic in food. Food and Chemical Toxicology, 37(8), 839–846.

    Article  CAS  Google Scholar 

  • Shakoor, M., Nabeel, N., Irshad, B., Rahman, M. M., Naidu, R., Dong, Z., et al. (2015). Unraveling health risk and speciation of arsenic from groundwater in rural areas of Punjab, Pakistan. International Journal of Environmental Research and Public Health, 12(10), 12371–12390.

    Article  CAS  Google Scholar 

  • Shapiro, H. A. (1967). Arsenic content of human hair and nails: its interpretation. Journal of Forensic Medicine, 14(2), 65–71.

    CAS  Google Scholar 

  • Signes-Pastor, A. J., Mitra, K., Sarkhel, S., Hobbes, M., Burló, F., De Groot, W. T., & Carbonell-Barrachina, A. A. (2008). Arsenic speciation in food and estimation of the dietary intake of inorganic arsenic in a rural village of West Bengal, India. Journal of Agricultural and Food Chemistry, 56(20), 9469–9474.

    Article  CAS  Google Scholar 

  • Suman, S., Sharma, P. K., Siddique, A. B., Rahman, M. A., Kumar, R., Rahman, M. M., et al. (2020). Wheat is an emerging exposure route for arsenic in Bihar, India. Science of the Total Environment, 703, 134–774.

    Article  CAS  Google Scholar 

  • Sun, G. X., Williams, P. N., Carey, A. M., Zhu, Y. G., Deacon, C., Raab, A., et al. (2008). Inorganic arsenic in rice bran and its products are an order of magnitude higher than in bulk grain. Environmental Science and Technology, 42(19), 7542–7546.

    Article  CAS  Google Scholar 

  • Sun, G. X., Williams, P. N., Zhu, Y. G., Deacon, C., Carey, A. M., Raab, A., et al. (2009). Survey of arsenic and its speciation in rice products such as breakfast cereals, rice crackers and Japanese rice condiments. Environmental International, 35(3), 473–475.

    Article  CAS  Google Scholar 

  • Tokunaga, H., Roychowdhury, T., Uchino, T., & Ando, M. (2005). Urinary arsenic species in an arsenic-affected area of West Bengal, India (part III). Applied Organometallic Chemistry, 19, 246–253. https://doi.org/10.1002/aoc.791.

    Article  CAS  Google Scholar 

  • USDA (2015). Agricultural Research Service, Nutrient Data Laboratory. USDA National Nutrient Database for Standard Reference, Release 28. Version Current, September 2015. http://www.ars.usda.gov/nea/bhnrc/ndl

  • USEPA (1988). Special report on ingested inorganic arsenic, skin cancer, nutritional essentiality. Technical Report EPA/625/3–87/013, Environmental Protection Agency, Washington, DC.

  • USEPA (2001). Baseline human health risk assessment Vasquez Boulevard and I-70 superfund site, Denver CO. http://www.epa.gov/region8/superfund/sites/VB-170-Risk.pdf. Accessed 01/20/2011

  • USEPA (2005). Guidelines for Carcinogen Risk Assessment. Risk Assessment Forum. United States Environmental Protection Agency, Washington, C. EPA/630/P-03/ 001F

  • USEPA. (2011). Screening Level (RSL) for Chemical Contaminant at Superfound Sites. U.S. Environmental Protection Agency.

  • Vahter, M. E. (1994). Species differences in the metabolism of arsenic. Environmental Geochemistry and Health, 16, 171–179.

    Google Scholar 

  • Van Geen, A., Zheng, Y., Stute, M., & Ahmed, K. M. (2003). Comment on “Arsenic mobility and groundwater extraction in Bangladesh” (II). Science, 300(5619), 584.

    Article  Google Scholar 

  • Vázquez, C., Rodríguez Castro, M. C., Palacios, O., & Boeykens, S. P. (2016). Risk analysis of acute and chronic exposure to arsenic of the inhabitants in a district of Buenos Aires, Argentina. Journal of Sustainable Development of Energy, Water and Environment Systems, 4(3), 234–241.

    Article  Google Scholar 

  • Wasserman, G. A., Liu, X., Lolacono, N. J., Kline, J., Factor-Litvak, P., & Van Geen, A. (2014). A cross-sectional study of well water arsenic and child IQ in marine school children. Environmental Health, 13(1), 23. https://doi.org/10.1186/1476-069X-13-23.

    Article  CAS  Google Scholar 

  • WHO (1981). Task Group on Environmental Health Criteria for Arsenic: Arsenic. Environmental Health Criteria18, World Health Organization, Geneva.

  • WHO (2011). Evaluation of certain contaminants in food. Seventy second report of the Joint FOA/WHO expert committee on food additives, WHO technical report series No. 959. World Health Organization, Geneva.

  • Williams, P. N., Islam, M. R., Admako, E. E., Raab, A., Hossain, S. A., Zhu, Y. G., & Meharg, A. A. (2006). Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated As in groundwater. Environmental Science and Technology, 40, 4903–4908.

    Article  CAS  Google Scholar 

  • Zhao, F. J., Stroud, J. L., Eagling, T., Dunham, S. J., McGrath, S. P., & Shewry, P. R. (2010). Accumulation, distribution, and speciation of As in wheat grain. Environmental Science and Technology, 44, 5464–5468. https://doi.org/10.1021/es100765g.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We acknowledge the help of ‘field workers’ for collection of required samples. The authors further acknowledge the local family members in the villages for showing their willingness to be involved into the work and providing the samples and related information to carry forward the research study. Financial supports from “Department of Science & Technology’, Government of West Bengal (research project grant Memo No. 262(Sanc.)/ST/P/S&T/1G-64/2017, dated 25/3/2018) and Inter University Research Project, RUSA (R-11/1092/19, dated 06/08/2019) are highly acknowledged.

Funding

Department of Science & Technology, Government of West Bengal (Research Project Grant Memo No. 262 (Sanc.)/ST/P/S&T/1G-64/2017, dated 25/3/2018) and Inter University Research Project, RUSA (R-11/1092/19, dated 06/08/2019).

Author information

Authors and Affiliations

Authors

Contributions

MJ was involved in research planning, analytical work, statistical presentation and initial draft preparation. AD performed analysis, statistical presentation and draft checking. NRC contributed to analysis and statistical presentation. DM and AD performed field survey, collection of samples and information from fields. KKM done identification of dermatological skin manifestations and health check-up of the studied populations. TR was involved in overall supervise the entire research study, manuscript revision and correction.

Corresponding author

Correspondence to Tarit Roychowdhury.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare that they do not have financial interests/personal relationships which may be considered as potential competing interests.

Ethics approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institute.

Consent for publication

All the authors are agreed to publish this work in this well renowned journal, and no part of this manuscript is either published earlier, or under consideration anywhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joardar, M., Das, A., Chowdhury, N.R. et al. Health effect and risk assessment of the populations exposed to different arsenic levels in drinking water and foodstuffs from four villages in arsenic endemic Gaighata block, West Bengal, India. Environ Geochem Health 43, 3027–3053 (2021). https://doi.org/10.1007/s10653-021-00823-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00823-3

Keywords

Navigation