Skip to main content
Log in

Fixed point characterizations of continuous univariate probability distributions and their applications

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

By extrapolating the explicit formula of the zero-bias distribution occurring in the context of Stein’s method, we construct characterization identities for a large class of absolutely continuous univariate distributions. Instead of trying to derive characterizing distributional transformations that inherit certain structures for the use in further theoretic endeavors, we focus on explicit representations given through a formula for the density- or distribution function. The results we establish with this ambition feature immediate applications in the area of goodness-of-fit testing. We draw up a blueprint for the construction of tests of fit that include procedures for many distributions for which little (if any) practicable tests are known. To illustrate this last point, we construct a test for the Burr Type XII distribution for which, to our knowledge, not a single test is known aside from the classical universal procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allison, J. S., Santana, L. (2015). On a data-dependent choice of the tuning parameter appearing in certain goodness-of-fit tests. Journal of Statistical Computation and Simulation, 85(16), 3276–3288.

    MathSciNet  Google Scholar 

  • Anastasiou, A. (2018). Assessing the multivariate normal approximation of the maximum likelihood estimator from high-dimensional, heterogeneous data. Electronic Journal of Statistics, 12(2), 3794–3828.

    MathSciNet  Google Scholar 

  • Anastasiou, A., Gaunt, R. (2019). Multivariate normal approximation of the maximum likelihood estimator via the delta method. to appear in Brazilian Journal of Probability and StatisticsarXiv:1609.03970.

  • Anastasiou, A., Reinert, G. (2017). Bounds for the normal approximation of the maximum likelihood estimator. Bernoulli, 23(1), 191–218.

    MathSciNet  Google Scholar 

  • Anastasiou, A., Reinert, G. (2018). Bounds for the asymptotic distribution of the likelihood ratio. arXiv e-prints arXiv:1806.03666.

  • Barbour, A. D. (1982). Poisson convergence and random graphs. Mathematical Proceedings of the Cambridge Philosophical Society, 92(2), 349–359.

    MathSciNet  Google Scholar 

  • Barbour, A. D. (1990). Stein’s method for diffusion approximations. Probability Theory and Related Fields, 84(3), 297–322.

    MathSciNet  Google Scholar 

  • Barbour, A. D., Karoński, M., Ruciński, A. (1989). A central limit theorem for decomposable random variables with applications to random graphs. Journal of Combinatorial Theory, Series B, 47(2), 125–145.

    MathSciNet  Google Scholar 

  • Baringhaus, L., Henze, N. (1988). A consistent test for multivariate normality based on the empirical characteristic function. Metrika, 35(1), 339–348.

    MathSciNet  Google Scholar 

  • Baringhaus, L., Henze, N. (2000). Tests of fit for exponentiality based on a characterization via the mean residual life function. Statistical Papers, 41(2), 225–236.

    MathSciNet  Google Scholar 

  • Betsch, S., Ebner, B. (2019a). A new characterization of the Gamma distribution and associated goodness-of-fit tests. Metrika, 82(7), 779–806.

    MathSciNet  Google Scholar 

  • Betsch, S., Ebner, B. (2019b). Testing normality via a distributional fixed point property in the Stein characterization. TEST, https://doi.org/10.1007/s11749-019-00630-0.

  • Braverman, A., Dai, J. G. (2017). Stein’s method for steady-state diffusion approximations of \({M} / \mathit{Ph} / n + {M}\) systems. The Annals of Applied Probability, 27(1), 550–581.

    MathSciNet  Google Scholar 

  • Braverman, A., Dai, J. G., Feng, J. (2016). Stein’s method for steady-state diffusion approximations: An introduction through the Erlang-A and Erlang-C models. Stochastic Systems, 6(2), 301–366.

    MathSciNet  Google Scholar 

  • Cabaña, A., Quiroz, A. (2005). Using the empirical moment generating function in testing for the Weibull and the type I extreme value distributions. TEST, 14(2), 417–432.

    MathSciNet  Google Scholar 

  • Carrillo, C., Cidrás, J., Díaz-Dorado, E., Obando-Montaño, A. F. (2014). An approach to determine the Weibull parameters for wind energy analysis: The case of Galicia (Spain). Energies, 7(4), 2676–2700.

    Google Scholar 

  • Chatterjee, S., Shao, Q.-M. (2011). Nonnormal approximation by Stein’s method of exchangeable pairs with application to the Curie–Weiss model. The Annals of Applied Probability, 21(2), 464–483.

    MathSciNet  Google Scholar 

  • Chen, L. H. Y., Goldstein, L., Shao, Q.-M. (2011). Normal approximation by Stein’s method. Berlin: Springer.

    Google Scholar 

  • Chwialkowski, K., Strathmann, H., Gretton, A. (2016). A kernel test of goodness of fit. Proceedings of the 33rd international conference on machine learning, ICML’16 (Vol. 48, pp. 2606–2615).

  • Döbler, C. (2015). Stein’s method of exchangeable pairs for the Beta distribution and generalizations. Electronic Journal of Probability, 20(109), 1–34.

    MathSciNet  Google Scholar 

  • Döbler, C. (2017). Distributional transformations without orthogonality relations. Journal of Theoretical Probability, 30(1), 85–116.

    MathSciNet  Google Scholar 

  • Epps, T. W., Pulley, L. B. (1983). A test for normality based on the empirical characteristic function. Biometrika, 70(3), 723–726.

    MathSciNet  Google Scholar 

  • Fang, X. (2014). Discretized normal approximation by Stein’s method. Bernoulli, 20(3), 1404–1431.

    MathSciNet  Google Scholar 

  • Gaunt, R., Pickett, A., Reinert, G. (2017). Chi-square approximation by Stein’s method with application to Pearson’s statistic. Annals of Applied Probability, 27(2), 720–756.

    MathSciNet  Google Scholar 

  • Goldstein, L., Reinert, G. (1997). Stein’s method and the zero bias transformation with application to simple random sampling. The Annals of Applied Probability, 7(4), 935–952.

    MathSciNet  Google Scholar 

  • Goldstein, L., Reinert, G. (2005). Distributional transformations, orthogonal polynomials, and Stein characterizations. Journal of Theoretical Probability, 18(1), 237–260.

    MathSciNet  Google Scholar 

  • Götze, F. (1991). On the rate of convergence in the multivariate CLT. The Annals of Probability, 19(2), 724–739.

    MathSciNet  Google Scholar 

  • Henze, N., Jiménez-Gamero, M. D. (2019). A new class of tests for multinormality with iid and garch data based on the empirical moment generating function. TEST, 28(2), 499–521.

    MathSciNet  Google Scholar 

  • Henze, N., Klar, B. (2002). Goodness-of-fit tests for the inverse Gaussian distribution based on the empirical Laplace transform. Annals of the Institute of Statistical Mathematics, 54(2), 425–444.

    MathSciNet  Google Scholar 

  • Henze, N., Meintanis, S. G., Ebner, B. (2012). Goodness-of-fit tests for the Gamma distribution based on the empirical Laplace transform. Communications in Statistics-Theory and Methods, 41(9), 1543–1556.

    MathSciNet  Google Scholar 

  • Hudson, H. M. (1978). A natural identity for exponential families with applications in multiparameter estimation. The Annals of Statistics, 6(3), 473–484.

    MathSciNet  Google Scholar 

  • Jalali, A., Watkins, A. J. (2009). On maximum likelihood estimation for the two parameter Burr XII distribution. Communications in Statistics—Theory and Methods, 38(11), 1916–1926.

    MathSciNet  Google Scholar 

  • Jiménez-Gamero, M. D., Alba-Fernández, V., Muñoz-García, J., Chalco-Cano, Y. (2009). Goodness-of-fit tests based on empirical characteristic functions. Computational Statistics & Data Analysis, 53(12), 3957–3971.

    MathSciNet  Google Scholar 

  • Kim, S.-T. (2000). A use of the Stein-Chen method in time series analysis. Journal of Applied Probability, 37(4), 1129–1136.

    MathSciNet  Google Scholar 

  • Kleiber, C., Kotz, S. (2003). Statistical size distributions in economics and actuarial sciences. Wiley series in probability and statistics. Hoboken: Wiley.

  • Ley, C. and Swan, Y. (2011). A unified approach to Stein characterizations. arXiv e-prints arXiv:1105.4925v3.

  • Ley, C., Swan, Y. (2013a). Local Pinsker inequalities via Stein’s discrete density approach. IEEE Transactions on Information Theory, 59(9), 5584–5591.

    MathSciNet  Google Scholar 

  • Ley, C., Swan, Y. (2013b). Stein’s density approach and information inequalities. Electronic Communications in Probability, 18, 1–14.

    MathSciNet  Google Scholar 

  • Ley, C., Swan, Y. (2016). Parametric Stein operators and variance bounds. Brazilian Journal of Probability and Statistics, 30(2), 171–195.

    MathSciNet  Google Scholar 

  • Ley, C., Reinert, G., Swan, Y. (2017). Stein’s method for comparison of univariate distributions. Probability Surveys, 14, 1–52.

    MathSciNet  Google Scholar 

  • Linnik, Y. V. (1962). Linear forms and statistical criteria I, II. Selected Translations in Mathematical Statistics and Probability, 3,1–40: 41–90. Originally published 1953 in the Ukrainian Mathematical Journal, Vol. 5, pp. 207–243, 247–290 (in Russian).

  • Liu, Q., Lee, J. D., Jordan, M. (2016). A kernelized Stein discrepancy for goodness-of-fit tests. Proceedings of the 33rd International Conference on Machine Learning, ICML’16, (Vol. 46, pp. 276–284).

  • Nikitin, Y. Y. (2017). Tests based on characterizations, and their efficiencies: A survey. Acta et Commentationes Universitatis Tartuensis de Mathematica, 21(1), 3–24.

    MathSciNet  Google Scholar 

  • O’Reilly, F. J., Stephens, M. A. (1982). Characterizations and goodness of fit tests. Journal of the Royal Statistical Society: Series B (Methodological), 44(3), 353–360.

    MathSciNet  Google Scholar 

  • Peköz, E. A., Röllin, A. (2011). New rates for exponential approximation and the theorems of Rényi and Yaglom. The Annals of Probability, 39(2), 587–608.

    MathSciNet  Google Scholar 

  • Pinelis, I. (2017). Optimal-order uniform and nonuniform bounds on the rate of convergence to normality for maximum likelihood estimators. Electronic Journal of Statistics, 11(1), 1160–1179.

    MathSciNet  Google Scholar 

  • Prakasa Rao, B. L. S. (1979). Characterizations of distributions through some identities. Journal of Applied Probability, 16(4), 903–909.

    MathSciNet  Google Scholar 

  • Proakis, J. G., Salehi, M. (2008). Digital communications, 5th ed. New York: McGraw-Hill.

  • R Core Team (2019). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

  • Reinert, G., Röllin, A. (2010). Random subgraph counts and U-statistics: Multivariate normal approximation via exchangeable pairs and embedding. Journal of Applied Probability, 47(2), 378–393.

    MathSciNet  Google Scholar 

  • Rogers, G. L. (2008). Multiple path analysis of reflectance from turbid media. Journal of the Optical Society of America A, 25(11), 2879–2883.

    Google Scholar 

  • Ross, N. (2011). Fundamentals of Stein’s method. Probability Surveys, 8, 210–293.

    MathSciNet  Google Scholar 

  • Shah, A., Gokhale, D. V. (1993). On maximum product of spacings (mps) estimation for Burr XII distributions. Communications in Statistics—Simulation and Computation, 22(3), 615–641.

    Google Scholar 

  • Singh, S. K., Maddala, G. S. (1976). A function for size distribution of incomes. Econometrica, 44(5), 963–970.

    Google Scholar 

  • Singh, V. P. (1987). On application of the Weibull distribution in hydrology. Water Resources Management, 1(1), 33–43.

    Google Scholar 

  • Stein, C. (1986). Approximate computation of expectations, Vol. 7. Hayward: Institute of Mathematical Statistics.

    Google Scholar 

  • Stein, C., Diaconis, P., Holmes, S., Reinert, G. (2004). Use of exchangeable pairs in the analysis of simulations. In P. Diaconis & S. Holmes (Eds.), Stein’s method. Lecture notes-monograph series, Vol. 46, pp. 1–25. Beachwood, OH: Institute of Mathematical Statistics.

    Google Scholar 

  • Tenreiro, C. (2019). On the automatic selection of the tuning parameter appearing in certain families of goodness-of-fit tests. Journal of Statistical Computation and Simulation, 89(10), 1780–1797.

    MathSciNet  Google Scholar 

  • Wingo, D. R. (1983). Maximum likelihood methods for fitting the Burr type XII distribution to life test data. Biometrical Journal, 25(1), 77–84.

    MathSciNet  Google Scholar 

  • Ying, L. (2017). Stein’s method for mean-field approximations in light and heavy traffic regimes. SIGMETRICS 2017 abstracts—Proceedings of the 2017 ACM SIGMETRICS/International conference on measurement and modeling of computer systems. Association for Computing Machinery, Inc.

  • Zghoul, A. A. (2010). A goodness of fit test for normality based on the empirical moment generating function. Communications in Statistics—Simulation and Computation, 39(6), 1292–1304.

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank an associate editor as well as three anonymous reviewers for their comments and suggestions that led to a major improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Betsch.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 222 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Betsch, S., Ebner, B. Fixed point characterizations of continuous univariate probability distributions and their applications. Ann Inst Stat Math 73, 31–59 (2021). https://doi.org/10.1007/s10463-019-00735-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-019-00735-1

Keywords

Navigation