Skip to main content
Log in

Evolution of adsorption isotherm and isosteric heat from sub-triple to super-critical points

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

We carried out a comprehensive molecular simulation to investigate the evolution of the excess isotherms and the isosteric heat with respect to temperature for argon adsorption on strong and weak substrates. The temperature ranges from well below the bulk triple point temperature to above the bulk critical temperature to show the first- (second-) order transitions and the state of the system at the bulk coexistence pressure P0, whether it is non-wetting, partial wetting or complete wetting (preceded by pre-wetting). It is found that the key parameter that affects the dependence of the transitions on temperature and the state of the system at P0 is the relative difference between the isosteric heat and the heat of sublimation (or condensation). For strong substrates, the state of the system changes from partial wetting to complete wetting when the temperature crosses the bulk triple point temperature, and for temperatures well below the bulk triple point the 2D-condensation occurs in the first and second (and possible higher) layers. For weak substrates, the state of the system changes from non-wetting to complete wetting when the temperature crosses the wetting temperature TW, which is specific to the substrate. For temperatures greater than TW, complete wetting in weak substrates only occurs at pressures close to the bulk coexistence pressure P0 via the initial stage of clustering (unfavourable adsorption), followed by a pre-wetting (known as thin-to-thick transition), and this is reflected in the increase of the isosteric heat from a value less than the heat of condensation λ and approaching λ as the pressure tends to P0.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Robens, E., Jayaweera, S.A.A.: Early history of adsorption measurements. Adsorpt. Sci. Technol. 32(6), 425–442 (2014). https://doi.org/10.1260/0263-6174.32.6.425

    Article  CAS  Google Scholar 

  2. Gatica, S.M., Cole, M.W.: To wet or not to wet: that is the question. J. Low Temp. Phys. 157(3–4), 111–136 (2009). https://doi.org/10.1007/s10909-009-9885-z

    Article  CAS  Google Scholar 

  3. Schlangen, L.J.M.: Adsorption and wetting: experiments, thermodynamics and molecular aspects. Schlangen, S.l (1995). Retrieved from https://edepot.wur.nl/205414

  4. Steele, W.A.: Wetting phenomena. In: Eduardo, J.B., Juan, M.D.T. (eds.) Adsorption by Carbons, pp. 167–185. Elsevier, Amsterdam (2008)

    Chapter  Google Scholar 

  5. Ahmad, D., van den Boogaert, I., Miller, J., Presswell, R., Jouhara, H.: Hydrophilic and hydrophobic materials and their applications. Energy Source A 40(22), 2686–2725 (2018). https://doi.org/10.1080/15567036.2018.1511642

    Article  CAS  Google Scholar 

  6. Erfani Gahrooei, H.R., Ghazanfari, M.H.: Application of a water based nanofluid for wettability alteration of sandstone reservoir rocks to preferentially gas wetting condition. J. Mol. Liq. 232, 351–360 (2017). https://doi.org/10.1016/j.molliq.2017.02.097

    Article  CAS  Google Scholar 

  7. Wang, Z., Elimelech, M., Lin, S.: Environmental applications of interfacial materials with special wettability. Environ. Sci. Technol. 50(5), 2132–2150 (2016). https://doi.org/10.1021/acs.est.5b04351

    Article  CAS  PubMed  Google Scholar 

  8. Yin, Y., Hang, L., Xu, J., McKenzie, D.R., Bilek, M.M.M.: Surface adsorption and wetting properties of amorphous diamond-like carbon thin films for biomedical applications. Thin Solid Films. 516(16), 5157–5161 (2008). https://doi.org/10.1016/j.tsf.2007.07.012

    Article  CAS  Google Scholar 

  9. Loi, Q.K., Prasetyo, L., Tan, S., Do, D.D., Nicholson, D.: Nonwetting/prewetting/wetting transition of ammonia on graphite. Langmuir 35(3), 641–652 (2019). https://doi.org/10.1021/acs.langmuir.8b03634

    Article  CAS  PubMed  Google Scholar 

  10. Prasetyo, L., Loi, Q.K., Tan, S.J., Do, D.D., Nicholson, D.: Effects of temperature on the transition from clustering to layering for argon adsorption on substrates of different strength: parametric map of wetting, pre-wetting and non-wetting. Microporous Mesoporous Mater. (2018). https://doi.org/10.1016/j.micromeso.2018a.12.023

    Article  Google Scholar 

  11. Prasetyo, L., Xu, H., Fan, C., Do, D.D., Nicholson, D.: On the coexistence pressure between the bulk and adsorbed argon on substrates of different strength: temperature dependence of the characteristics of the adsorbate. Chem. Eng. J. 378, 122214 (2019). https://doi.org/10.1016/j.cej.2019.122214

    Article  CAS  Google Scholar 

  12. Xu, H., Zeng, Y., Do, D.D., Nicholson, D.: On the nonwetting/wetting behavior of carbon dioxide on graphite. J. Phys. Chem. C 123(14), 9112–9120 (2019). https://doi.org/10.1021/acs.jpcc.9b00635

    Article  CAS  Google Scholar 

  13. Dunne, J.A., Mariwala, R., Rao, M., Sircar, S., Gorte, R.J., Myers, A.L.: Calorimetric heats of adsorption and adsorption isotherms. 1. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on silicalite. Langmuir 12(24), 5888–5895 (1996). https://doi.org/10.1021/la960495z

    Article  CAS  Google Scholar 

  14. Sircar, S.: Gibbsian surface excess for gas adsorption revisited. Ind. Eng. Chem. Res. 38(10), 3670–3682 (1999). https://doi.org/10.1021/ie9900871

    Article  CAS  Google Scholar 

  15. Sircar, S.: Measurement of gibbsian surface excess. AIChE 47(5), 1169–1176 (2001)

    Article  CAS  Google Scholar 

  16. Sircar, S., Cao, D.V.: Heat of adsorption. Chem. Eng. Technol. 25(10), 945–948 (2002)

    Article  CAS  Google Scholar 

  17. Sircar, S., Mohr, R., Ristic, C., Rao, M.B.: Isosteric heat of adsorption: theory and experiment. J. Phys. Chem. B 103(31), 6539–6546 (1999). https://doi.org/10.1021/jp9903817

    Article  CAS  PubMed  Google Scholar 

  18. Sircar, S., Rao, M.B.: Heat of adsorption of pure gas and multicomponent gas mixtures on microporous adsorbents. In: Schwarz, J.A., Contescu, C.I. (eds.) Surface of Nanoparticles and Porous Materials, pp. 501–528. Marcel Dekker Inc, New York (1999)

    Google Scholar 

  19. Prasetyo, L., Tan, S., Akram, A., Do, D.D., Nicholson, D.: Cluster growth and coalescence of argon on weakly adsorbing substrates: the origin of the thin-to-thick film transition. Colloids Surf. A 554, 169–179 (2018). https://doi.org/10.1016/j.colsurfa.2018.06.037

    Article  CAS  Google Scholar 

  20. Nguyen, V.T., Do, D.D., Nicholson, D.: Monte Carlo simulation of the gas-phase volumetric adsorption system: effects of dosing volume size, incremental dosing amount, pore shape and size, and temperature. J. Phys. Chem. B 115(24), 7862–7871 (2011). https://doi.org/10.1021/jp202073r

    Article  CAS  PubMed  Google Scholar 

  21. Nguyen, V.T., Do, D.D., Nicholson, D.: Reconciliation of different simulation methods in the determination of the equilibrium branch for adsorption in pores. Mol. Simul. 40(7–9), 713–720 (2014). https://doi.org/10.1080/08927022.2013.829229

    Article  CAS  Google Scholar 

  22. Johnson, J.K., Zollweg, J.A., Gubbins, K.E.: The Lennard-Jones equation of state revisited. Mol. Phys. 78(3), 591–618 (1993)

    Article  CAS  Google Scholar 

  23. Michels, A., Wijker, H., Wijker, H.: Isotherms of argon between 0°c and 150°c and pressures up to 2900 atmospheres. Physica 15(7), 627–633 (1949). https://doi.org/10.1016/0031-8914(49)90119-6

    Article  CAS  Google Scholar 

  24. Steele, W.A.: The physical interaction of gases with crystalline solids: I Gas-solid energies and properties of isolated adsorbed atoms. Surf. Sci. 36(1), 317–352 (1973)

    Article  CAS  Google Scholar 

  25. Herrera, L.F., Prasetyo, L., Do, D.D.: Characterisation of the absolute accessible volume of porous materials. Adsorption (2019). https://doi.org/10.1007/s10450-019-00078-6

    Article  Google Scholar 

  26. Chen, B., Siepmann, J.I., Klein, M.L.: Direct Gibbs ensemble Monte Carlo simulations for solid-vapor phase equilibria: applications to Lennard-Jonesium and carbon dioxide. J. Phys. Chem. B 105(40), 9840–9848 (2001). https://doi.org/10.1021/jp011950p

    Article  CAS  Google Scholar 

  27. Tan, S.J., Prasetyo, L., Zeng, Y., Do, D.D., Nicholson, D.C.: On the consistency of NVT, NPT, uVT and Gibbs ensembles in the framework of kinetic Monte Carlo: fluid phase equilibria and adsorption of pure component systems. Chem. Eng. J. 316, 243–254 (2017)

    Article  CAS  Google Scholar 

  28. Do, D.D., Do, H.D., Nicholson, D.: Molecular simulation of excess isotherm and excess enthalpy change in gas-phase adsorption. J. Phys. Chem. B 113(4), 1030–1040 (2009). https://doi.org/10.1021/jp8046467

    Article  CAS  PubMed  Google Scholar 

  29. Rouquerol, J., Rouquerol, F., Llewellyn, P., Denoyel, R.: Surface excess amounts in high-pressure gas adsorption: issues and benefits. Colloids Surf. A 496, 3–12 (2016). https://doi.org/10.1016/j.colsurfa.2015.10.045

    Article  CAS  Google Scholar 

  30. Do, D.D., Do, H.D.: Adsorption of argon from sub- to supercritical conditions on graphitised thermal carbon black and in graphitic slit pores: a grand canonical Monte Carlo simulation study. J. Chem. Phys. 123(8), 211 (2005)

    Article  Google Scholar 

  31. Do, D.D., Do, H.D., Fan, C.Y., Nicholson, D.: On the existence of negative excess isotherms for argon adsorption on graphite surfaces and in graphitic pores under supercritical conditions at pressures up to 10,000 atm. Langmuir 26(7), 4796–4806 (2010)

    Article  CAS  Google Scholar 

  32. Phadungbut, P., Fan, C., Do, D.D., Nicholson, D., Tangsathitkulchai, C.: Determination of absolute adsorption for argon on flat surfaces under sub- and supercritical conditions. Colloids Surf. A 480, 19–27 (2015). https://doi.org/10.1016/j.colsurfa.2015.04.011

    Article  CAS  Google Scholar 

  33. Zeng, Y., Xu, H., Do, D.D., Nicholson, D.: Adsorption of argon on graphitised carbon black preloaded with methanol, ammonia and water: the role of adsorption regions and adsorbates. Chem. Eng. J. 334, 1316–1327 (2018). https://doi.org/10.1016/j.cej.2017.11.098

    Article  CAS  Google Scholar 

  34. Xu, H., Prasetyo, L., Do, D.D., Nicholson, D.: The Henry constant and isosteric heat at zero loading for adsorption on energetically heterogeneous solids absolute versus excess. Chem. Eng. J. 395, 125035 (2020). https://doi.org/10.1016/j.cej.2020.125035

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project is supported by the Australian Research Council (DP160103540).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Do.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contribution to a special issue in honour of Shijavi Sircar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrera, L., Loi, Q.K., Prasetyo, L. et al. Evolution of adsorption isotherm and isosteric heat from sub-triple to super-critical points. Adsorption 27, 239–252 (2021). https://doi.org/10.1007/s10450-020-00294-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-020-00294-5

Keywords

Navigation