Skip to main content
Log in

Plant Mitochondria are a Riddle Wrapped in a Mystery Inside an Enigma

  • Commentary
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

A fundamental paradox motivates the study of plant mitochondrial genomics: the mutation rate is very low (lower than in the nucleus) but the rearrangement rate is high. A landmark paper published in Journal of Molecular Evolution in 1988 established these facts and revealed the paradox. Jeffrey Palmer and Laura Herbon did a prodigious amount of work in the pre-genome sequencing era to identify both the high frequency of rearrangements between closely related species, and the low frequency of mutations, observations that have now been confirmed many times by sequencing. This paper was also the first to use molecular data on rearrangements as a phylogenetic trait to build a parsimonious tree. The work was a technical tour-de-force, its findings are still at the heart of plant mitochondrial genomics, and the underlying molecular mechanisms that produce this paradox are still not completely understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Bader DA, Moret BME, Yan M (2001) A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. J ComputBiol 8:483

    CAS  Google Scholar 

  • Bendich AJ (1993) Reaching for the ring: the study of mitochondrial genome structure. Curr Genet 24:279

    Article  PubMed  CAS  Google Scholar 

  • Bendich A (1996) Structural analysis of mitochondrial DNA molecules from fungi and plants using moving pictures and pulsed field gel electrophoresis. J MolBiol 255:564

    Article  CAS  Google Scholar 

  • Bendich AJ (2007) The size and form of chromosomes are constant in the nucleus, but highly variable in bacteria, mitochondria and chloroplasts. BioEssays 29:474

    Article  PubMed  CAS  Google Scholar 

  • Bendich AJ (2013) DNA abandonment and the mechanisms of uniparental inheritance of mitochondria and chloroplasts. Chromosome Res 21:287

    Article  PubMed  CAS  Google Scholar 

  • Bergthorsson U, Adams KL, Thomason B, Palmer JD (2003) Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424:197

    Article  PubMed  CAS  Google Scholar 

  • Blanchette M, Kunisawa T, Sankoff D (1999) Gene order breakpoint evidence in animal mitochondrial phylogeny. J MolEvol 49:193

    CAS  Google Scholar 

  • Boore JL, Brown WM (1998) Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. CurrOpin Genet Dev 8:668

    Article  CAS  Google Scholar 

  • Brown WM, George M Jr, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. ProcNatlAcadSci USA 76:1967

    Article  CAS  Google Scholar 

  • Cai G, Yang Q, Yi B, Fan C, Edwards D, Batley J, Zhou Y (2014) A complex recombination pattern in the genome of allotetraploidBrassica napus as revealed by a high-density genetic map. PLoS ONE 9:e109910

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang S, Yang T, Du T, Huang Y, Chen J, Yan J, He J, Guan R (2011) Mitochondrial genome sequencing helps show the evolutionary mechanism of mitochondrial genome formation in Brassica. BMC Genomics 12:497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Christensen AC (2013) Plant mitochondrial genome evolution can be explained by DNA repair mechanisms. Genome BiolEvol 5:1079

    Article  Google Scholar 

  • Christensen AC (2014) Genes and junk in plant mitochondria—repair mechanisms and selection. Genome BiolEvol 6:1448

    Article  CAS  Google Scholar 

  • Clary DO, Wolstenholme DR (1985) The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J MolEvol 22:252

    CAS  Google Scholar 

  • Clary DO, Goddard JM, Martin SC, Fauron CM, Wolstenholme DR (1982) Drosophila mitochondrial DNA: a novel gene order. Nucleic Acids Res 10:6619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cole LW, Guo W, Mower JP, Palmer JD (2018) High and variable rates of repeat-mediated mitochondrial genome rearrangement in a genus of plants. MolBiolEvol 35:2773

    CAS  Google Scholar 

  • Darracq A, Varre JS, Touzet P (2010) A scenario of mitochondrial genome evolution in maize based on rearrangement events. BMC Genomics 11:233

    Article  PubMed  PubMed Central  Google Scholar 

  • Dobzhansky T, Sturtevant AH (1938) Inversions in the chromosomes of Drosophila pseudoobscura. Genetics 23:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Graur D, Zheng Y, Azevedo RBR (2015) An evolutionary classification of genomic function. Genome BiolEvol 7(3):642–645

    Article  CAS  Google Scholar 

  • Grewe F, Edger PP, Keren I, Sultan L, Pires JC, Ostersetzer-Biran O, Mower JP (2014) Comparative analysis of 11 Brassicales mitochondrial genomes and the mitochondrial transcriptome of Brassica oleracea. Mitochondrion 19(Part B):135

    Article  PubMed  CAS  Google Scholar 

  • Gualberto JM, Newton KJ (2017) Plant mitochondrial genomes: dynamics and mechanisms of mutation. Annu Rev Plant Biol 68:225–252

    Article  PubMed  CAS  Google Scholar 

  • Handa H (2003) The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucleic Acids Res 31:5907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar RA, Oldenburg DJ, Bendich AJ (2015) Molecular integrity of chloroplast DNA and mitochondrial DNA in mesophyll and bundle sheath cells of maize. Planta 241:1221

    Article  PubMed  CAS  Google Scholar 

  • Makaroff CA, Palmer JD (1987) Extensive mitochondrial specific transcription of the Brassica campestris mitochondrial genome. Nucleic Acids Res 15:5141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Makaroff CA, Palmer JD (1988) Mitochondrial DNA rearrangements and transcriptional alterations in the male-sterile cytoplasm of Ogura radish. Mol Cell Biol 8:1474

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mower JP, Stefanović S, Hao W, Gummow JS, Jain K, Ahmed D, Palmer JD (2010) Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes. BMC Biol 8:150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oldenburg DJ, Kumar RA, Bendich AJ (2013) The amount and integrity of mtDNA in maize decline with development. Planta 237:603

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD, Herbon LA (1988) Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J MolEvol 28:87

    CAS  Google Scholar 

  • Palmer JD, Shields CR (1984) Tripartite structure of the Brassica campestris mitochondrial genome. Nature 307:437

    Article  CAS  Google Scholar 

  • Palmer JD, Shields CR, Cohen DB, Orton TJ (1983) Chloroplast DNA evolution and the origin of amphidiploid Brassica species. TheorAppl Genet 65:181

    Article  CAS  Google Scholar 

  • Rice DW, Alverson AJ, Richardson AO, Young GJ, Sanchez-Puerta MV, Munzinger J, Barry K, Boore JL, Zhang Y, dePamphilis CW, Knox EB, Palmer JD (2013) Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Science 342:1468

    Article  PubMed  CAS  Google Scholar 

  • Richardson AO, Palmer JD (2007) Horizontal gene transfer in plants. J Exp Bot 58:1

    Article  PubMed  CAS  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487

    Article  PubMed  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. ProcNatlAcadSci USA 74:5463

    Article  CAS  Google Scholar 

  • Sankoff D, Leduc G, Antoine N, Paquin B, Lang BF, Cedergren R (1992) Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. ProcNatlAcadSci USA 89:6575

    Article  CAS  Google Scholar 

  • Sloan DB, Taylor DR (2010) Testing for selection on synonymous sites in plant mitochondrial DNA: the role of codon bias and RNA editing. J MolEvol 70:479

    CAS  Google Scholar 

  • Smith MJ, Arndt A, Gorski S, Fajber E (1993) The phylogeny of echinoderm classes based on mitochondrial gene arrangements. J MolEvol 36:545

    CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J MolBiol 98:503

    Article  CAS  Google Scholar 

  • Stent GS (1968) That was the molecular biology that was. Science 160:390

    Article  PubMed  CAS  Google Scholar 

  • Sturtevant AH, Dobzhansky T (1936) Inversions in the third chromosome of wild races of Drosophila pseudoobscura, and their use in the study of the history of the species. ProcNatlAcadSci USA 22:448

    Article  CAS  Google Scholar 

  • Tesler G (2002) GRIMM: genome rearrangements web server. Bioinformatics 18:492

    Article  PubMed  CAS  Google Scholar 

  • U N (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389

    Google Scholar 

  • Unseld M, Marienfeld JR, Brandt P, Brennicke A (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet 15:57

    Article  PubMed  CAS  Google Scholar 

  • Ward BL, Anderson RS, Bendich AJ (1981) The mitochondrial genome is large and variable in a family of plants (cucurbitaceae). Cell 25:793

    Article  PubMed  CAS  Google Scholar 

  • Wolfe K, Li W, Sharp P (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast and nuclear DNAs. ProcNatlAcadSci USA 84:9054

    Article  CAS  Google Scholar 

  • Wu Z, Waneka G, Broz AK, King CR, Sloan DB (2020) MSH1 is required for maintenance of the low mutation rates in plant mitochondrial and plastid genomes. ProcNatlAcadSci USA 117:16448

    Article  CAS  Google Scholar 

  • Wynn EL, Christensen AC (2015) Are synonymous substitutions in flowering plant mitochondria neutral? J MolEvol 81:131

    CAS  Google Scholar 

  • Wynn EL, Christensen AC (2019) Repeats of unusual size in plant mitochondrial genomes: identification, incidence and evolution. G3 9:549

    Article  PubMed  CAS  Google Scholar 

  • Wynn E, Purfeerst E, Christensen A (2020) Mitochondrial DNA repair in an Arabidopsis thaliana uracil N-glycosylase mutant. Plants (Basel) 9:261

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Apologies to Sir Winston Churchill for the title. The author is grateful to Beth Rowan, Emily Wynn, Wayne Riekhof, and members of his lab for helpful comments on the manuscript, and to Jeff Mower for discussions about rearrangements as a phylogenetic trait. This work in his lab is supported by a Grant from the National Science Foundation (MCB-1933590).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan C. Christensen.

Additional information

Handling editor: Aaron Goldman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christensen, A.C. Plant Mitochondria are a Riddle Wrapped in a Mystery Inside an Enigma. J Mol Evol 89, 151–156 (2021). https://doi.org/10.1007/s00239-020-09980-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-020-09980-y

Navigation