Skip to main content
Log in

Theoretical Analysis of Hysteresis and Characteristic Transition Temperatures of Iron-Based Memory Metals

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The correlation between valence electrons per atom (ev/a) and the characteristic transition temperatures of quaternary and quinary Fe-based shape memory alloys (SMAs) is investigated. Regression equations relating their transformation temperatures (Ms, As) to composition and ev/a are obtained. On adding alloying elements to the SMAs, their transformation temperatures get altered and this is correlated to their ev/a ratio. Three distinct trends between the ev/a ratio and transformation temperatures are found. The correlation between the transformation hysteresis and the atom diameter of the alloying elements is also analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

M s :

Martensite start

M f :

Martensite finish

A s :

Austenite start

A f :

Austenite finish

SMA:

Shape Memory Alloys

SME:

Shape Memory Effect

T N :

Neel temperature

SFE:

Stacking Fault Energy

HCP:

Hexagonal close packed

BCC:

Body-centred cubic

FCC:

Face-centred cubic

ev/a:

Valence electron per atom

C v :

Concentration of valence electrons

VED:

Valence electron density

R (Sq):

Correlation coefficient

R-Sq (Adj):

Correlation coefficient (Adjusted)

S:

Standard error

References

  1. Naresh C, Bose P and Rao C, Shape memory alloys: a state of art review, IOP Conference Series: Materials Science and Engineering, IOP Publishing, (2016), 1, 012054.

  2. Al-Humairi S N S, Cu-Based Shape Memory Alloys: Modified Structures and Their Related Properties, IntechOpen, (2019)

  3. Omori T and Kainuma R, Shape Memory and Superelasticity 3 (2017) 322–334.

  4. Alaneme K K and Okotete E A, Engineering Science and Technology, an International Journal 19 (2016) 1582–1592.

  5. Cladera A, Weber B, Leinenbach C, Czaderski C, Shahverdi M and Motavalli M, Construction and building materials 63 (2014) 281–293.

  6. Choon T W, Salleh A S, Jamian S and Ghazali M I, World Academy of Science, Engineering and Technology 25 (2007)

  7. Liu Y, in Some factors affecting the transformation hysterisis in shape memory alloys, (ed) Chen HR, Nove Science Publisher Inc., Singapore (2010), p 361.

  8. Haenschke T, Davis C L and Attallah M M, Mater Chem Phys 141 (2013) 272–277.

  9. Mishra M and Ravindra A A, Int J Struct Civ Eng Res 3 (2014) 96-112.

  10. Buenconsejo P J S, Kim H Y and Miyazaki S, Acta Mater 57 (2009) 2509–2515.

  11. Otsuka, K., CM Wayman, Shape Memory Materials. (1998), Cambridge University Press.

  12. Cao B and Iwamoto T, Int J Impact Eng 132 (2019) 103284.

  13. Gu Q, Van Humbeeck J and Delaey L, Le J Phys IV 4 (1994) C3–135-C3–144.

  14. Li H, Dunne D and Kennon N, Mater Sci Eng A 273 (1999) 517–523.

  15. Zhang Y S, Lu X, Tian X and Qin Z, Mater Sci Eng A 334 (2002) 19–27.

  16. Dogan A and Ozer T, Can Metall Q 44 (2005) 555–562

  17. Huisman-Kleinherenbrink P M, Jian Y and Beyer J, Mater Lett 11 (1991) 145–150.

  18. Fukuyo S, Suzuki Y, Suzuki K and Sairenji E, by TW Duerig, et al (1990) 470.

  19. Zarinejad M and Liu Y, Adv Funct Mater 18 (2008) 2789–2794.

  20. Gilman J, Cumberland R and Kaner R, Int J Refract Met Hard Mater 24 (2006) 1–5.

  21. Gilman J, Electronic basis of the strength of materials, Cambridge University Press, (2003)

  22. Otsuka H, Yamada H, Maruyama T, Tanahashi H, Matsuda S and Murakami M, ISIJ Int 30 (1990) 674–679.

  23. Otsuka K and Ren X, Prog Mater Sci 50 (2005) 511–678.

  24. Tomota Y, Nakagawara W, Tsuzaki K and Maki T, Scr Metall Mater 26 (1992) 1571–1574.

  25. Otsuka H, Yamada H, Tanahashi H and Maruyama T, Shape memory effect in Fe-Mn-Si-Cr-Ni polycrystalline alloys, Mater Sci Forum, Trans Tech Publ, (1990), 655–660.

  26. Hsu T, Fe-Mn-Si based shape memory alloys, Mater Sci Forum, Trans Tech Publ, (2000), 199–206.

  27. Miyazaki S, Ohmi Y, Otsuka K and Suzuki Y, Le J Phys Colloq 43 (1982) C4–255-C4–260.

  28. Koyama M, Sawaguchi T and Tsuzaki K, Mater Sci Eng A 528 (2011) 2882-2888.

  29. Yang J and Wayman C, Metall Mater Trans A 23 (1992) 1445-1454.

  30. Li C, Cheng D and Jin Z, Mater Sci Eng A 325 (2002) 375-379.

  31. Huijun L, The developement if iron based shape memory alloys, Ph D Thesis, University of Wollongong, Australia (1996).

  32. Maji B C, Krishnan M, Sujata M and Ray R K, Metall Mater Trans A 44 (2013) 172-185.

  33. Sachdeva R and Miyazaki S, Engineering aspects of shape memory alloys 452 (1990)

  34. Sehitoglu H, Efstathiou C, Maier H and Chumlyakov Y, J Magn Magn Mater 292 (2005) 89-99.

  35. Miyazaki S, Fukutsuji S and Taira M, Application of Ti-Ni shape memory alloys to partial dentures, Proceedings of the international conference on martensitic transformations (ICOMAT-92)(1993), 1235–1240.

  36. Kakeshita T, Takeuchi T, Fukuda T, Saburi T, Oshima R, Muto S and Kishio K, Mater Trans, JIM 41 (2000) 882-887.

  37. Yang G-s, Jonasson R, Baek S-n, Murata K, Inoue S, Koterazawa K, Jeong S-j, Mizuuchi K and Inoue K, MRS Online Proceedings Library Archive 785 (2003).

  38. Wada T, Tagawa T and Taya M, Scr Mater 48 (2003) 207–211.

  39. Oshima R, Muto S and Hamada T, Platin Met Rev 32 (1988) 110-118.

  40. Wayman C, Scr Mater 5 (1971) 489-492.

  41. Kajiwara S and Kikuchi T, Acta Mater 38 (1990) 847-855.

Download references

Acknowledgements

Financial support from Core Research Grant of SERB under Project No. CRG/2019/002267 is profusely acknowledged by Prof. V. Sampath.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sampath.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sampath, V., Gayathri Ayyagari, S.V., Srinithi, R. et al. Theoretical Analysis of Hysteresis and Characteristic Transition Temperatures of Iron-Based Memory Metals. Trans Indian Inst Met 74, 611–618 (2021). https://doi.org/10.1007/s12666-020-02147-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02147-9

Keywords

Navigation