Skip to main content
Log in

Lactobacillus Plantarum 299v Changes miRNA Expression in the Intestines of Piglets and Leads to Downregulation of LITAF by Regulating ssc-miR-450a

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Lactiplantibacillus plantarum subsp. plantarum 299v (L. plantarum 299v) is one of the most important probiotic strains in animal health, but the molecular mechanisms of how it exerts health benefits remain unclear. The purpose of this study was to explore the changes in miRNA expression profiles in the intestinal tissues of piglets by L. plantarum 299v and to explore its possible molecular regulatory mechanism in intestinal function. Neonatal piglets were orally administered L. plantarum 299v daily from 1 to 20 days old, and high-throughput sequencing was conducted to analyse the changes in miRNA expression in the jejunum and ileum. The results showed that 370 known porcine miRNAs were identified from eight libraries. Five miRNAs (ssc-miR-21-5p, -143-3p, -194b-5p, -192, and -126-3p) were highly expressed in the intestinal tissues. There were 15 differentially expressed miRNAs between the control group and the L. plantarum group, and only miR-450a was expressed differentially in both intestinal tissues. KEGG analysis revealed that the target genes of the 15 differentially expressed miRNAs were involved in 37 significantly enriched pathways (P < 0.01). Then, quantitative polymerase chain reaction confirmed that the miRNA expression was corresponded well with those from the sequencing. Luciferase reporter assays verified that lipopolysaccharide-induced TNF-α factor is a target of miR-450a. Our results also showed L. plantarum 299v could influence intestinal function by changing the levels of cytokines via miRNA expression. This is the first study to analyse differential expression miRNA profiles in intestinal tissue after L. plantarum 299v treatment and investigate the molecular regulatory mechanism of functional miRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  1. Cai Y, Yu X, Hu S, Yu J (2009) A brief review on the mechanisms of miRNA regulation. Genom Proteom Bioinf 7:147–154. https://doi.org/10.1016/s1672-0229(08)60044-3

    Article  CAS  Google Scholar 

  2. Vienberg S, Geiger J, Madsen S, Dalgaard LT (2017) MicroRNAs in metabolism. Acta Physiol (Oxf) 219:346–361. https://doi.org/10.1111/apha.12681

    Article  CAS  Google Scholar 

  3. Yang BF, Lu YJ, Wang ZG (2009) MicroRNAs and apoptosis: implications in the molecular therapy of human disease. Clin Exp Pharmacol Physiol 36:951–960. https://doi.org/10.1111/j.1440-1681.2009.05245.x

    Article  CAS  PubMed  Google Scholar 

  4. Lynam-Lennon N, Maher SG, Reynolds JV (2009) The roles of microRNA in cancer and apoptosis. Biol Rev Camb Philos Soc 84:55–71. https://doi.org/10.1111/j.1469-185X.2008.00061.x

    Article  PubMed  Google Scholar 

  5. Mahabadi JA, Sabzalipoor H, Nikzad H, Seyedhosseini E, Enderami SE, Gheibi Hayat SM, Sahebkar A (2019) The role of microRNAs in embryonic stem cell and induced pluripotent stem cell differentiation in male germ cells. J Cell Physiol 234:12278–12289. https://doi.org/10.1002/jcp.27990

    Article  CAS  PubMed  Google Scholar 

  6. Williams MR, Stedtfeld RD, Tiedje JM, Hashsham SA (2017) MicroRNAs-based inter-domain communication between the host and members of the gut microbiome. Front Microbiol 8:1896. https://doi.org/10.3389/fmicb.2017.01896

    Article  PubMed  PubMed Central  Google Scholar 

  7. Runtsch MC, Round JL, O’Connell RM (2014) MicroRNAs and the regulation of intestinal homeostasis. Front Genet 5:347. https://doi.org/10.3389/fgene.2014.00347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dalmasso G, Nguyen HT, Yan Y, Laroui H, Charania MA, Ayyadurai S, Sitaraman SV, Merlin D (2011) Microbiota modulate host gene expression via microRNAs. PLoS One 6:e19293. https://doi.org/10.1371/journal.pone.0019293.g001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Singh N, Shirdel EA, Waldron L, Zhang RH, Jurisica I, Comelli EM (2012) The murine caecal microRNA signature depends on the presence of the endogenous microbiota. Int J Biol Sci 8:171–186. https://doi.org/10.7150/ijbs.8.171

    Article  CAS  PubMed  Google Scholar 

  10. Collins M (1999) Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am J of Clin Nutr 69:1052S. https://doi.org/10.1079/095442299108728893

    Article  CAS  Google Scholar 

  11. Delia E, Tafaj M, Manner K (2012) Efficiency of probiotics in farm animals. In: Rigobelo E (ed) Probiotic in animals Intechopen, London, pp 247–272. https://doi.org/10.5772/50055

  12. Yousefi B, Eslami M, Ghasemian A, Kokhaei P, Salek Farrokhi A, Darabi N (2019) Probiotics importance and their immunomodulatory properties. J Cell Physiol 234:8008–8018. https://doi.org/10.1002/jcp.27559

    Article  CAS  PubMed  Google Scholar 

  13. Kreuzer-Redmer S, Bekurtz JC, Arends D, Bortfeldt R, Kutz-Lohroff B, Sharbati S, Einspanier R, Brockmann GA (2016) Feeding of Enterococcus faecium NCIMB 10415 leads to intestinal miRNA-423–5p-induced regulation of immune-relevant genes. Appl Environ Microbiol 82:2263–2269. https://doi.org/10.1128/AEM.04044-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rodríguez-Nogales A, Algieri F, Garrido-Mesa J, Vezza T, Utrilla MP, Chueca N, Garcia F, Olivares M, Rodríguez-Cabezas ME, Gálvez J (2017) Differential intestinal anti-inflammatory effects of Lactobacillus fermentum and Lactobacillus salivarius in DSS mouse colitis: impact on microRNAs expression and microbiota composition. Mol Nutr Food Res 61:1700144. https://doi.org/10.1002/mnfr.201700144

    Article  CAS  Google Scholar 

  15. Chen Q, Tong C, Ma S, Zhou L, Zhao L, Zhao X (2017) Involvement of microRNAs in probiotics-induced reduction of the cecal inflammation by Salmonella Typhimurium. Front Immunol 8. https://doi.org/10.3389/fimmu.2017.00704

  16. Heydari Z, Rahaie M, Alizadeh AM, Agah S, Khalighfard S, Bahmani S (2018) Effects of Lactobacillus acidophilus and Bifidobacterium bifidum probiotics on the expression of microRNAs 135b, 26b, 18a and 155, and their involving genes in mice colon cancer. Probiotics Antimicro. https://doi.org/10.1007/s12602-018-9478-8

    Article  Google Scholar 

  17. Johansson ML, Molin G, Jeppsson B, Nobaek S, Ahrné S, Bengmark S (1993) Administration of different Lactobacillus strains in fermented oatmeal soup: In vivo colonization of human intestinal mucosa and effect on the indigenous flora. Appl Environ Microb 59:15–20. https://doi.org/10.1016/S0065-2164(08)70598-7

    Article  CAS  Google Scholar 

  18. Herías MV, Hessle C, Telemo E, Midtvedt T, Hanson LA, Wold AE (1999) Immunomodulatory effects of Lactobacillus plantarum colonizing the intestine of gnotobiotic rats. Clin Exp Immunol 116:283–290. https://doi.org/10.1046/j.1365-2249.1999.00891.x

    Article  PubMed  PubMed Central  Google Scholar 

  19. Khanian M, Karimi-Torshizi MA, Allameh A (2019) Alleviation of aflatoxin-related oxidative damage to liver and improvement of growth performance in broiler chickens consumed Lactobacillus plantarum 299v for entire growth period. Toxicon 158:57–62. https://doi.org/10.1016/j.toxicon.2018.11.431

    Article  CAS  PubMed  Google Scholar 

  20. Dudzicz S, Kujawa-Szewieczek A, Kwiecien K, Wiecek A, Adamczak M (2018) Lactobacillus plantarum 299v reduces the incidence of clostridium difficile infection in nephrology and transplantation ward-results of one year extended study. Nutrients 10:1574. https://doi.org/10.3390/nu10111574

    Article  CAS  PubMed Central  Google Scholar 

  21. Fak F, Ahrne S, Linderoth A, Molin G, Jeppsson B, Westrom B (2008) Age-related effects of the probiotic bacterium Lactobacillus plantarum 299v on gastrointestinal function in suckling rats. Dig Dis Sci 53:664–671. https://doi.org/10.1007/s10620-007-9906-1

    Article  PubMed  Google Scholar 

  22. Fak F, Ahrne S, Molin G, Jeppsson B, Westrom B (2008) Maternal consumption of Lactobacillus plantarum 299v affects gastrointestinal growth and function in the suckling rat. Br J Nutr 100:332–338. https://doi.org/10.1017/S0007114507883036

    Article  CAS  PubMed  Google Scholar 

  23. Wang Q, Sun Q, Qi R, Wang J, Qiu X, Liu Z, Huang J (2019) Effects of Lactobacillus plantarum on the intestinal morphology, intestinal barrier function and microbiota composition of suckling piglets. J Anim Physiol Anim Nutr (Berl) 103:1908–1918. https://doi.org/10.1111/jpn.13198

    Article  CAS  Google Scholar 

  24. Noureldein MH, Eid AA (2018) Gut microbiota and mTOR signaling: insight on a new pathophysiological interaction. Microb Pathog 118:98–104. https://doi.org/10.1016/j.micpath.2018.03.021

    Article  CAS  PubMed  Google Scholar 

  25. Tao X, Xu Z, Men X (2016) Analysis of serum microRNA expression profiles and comparison with small intestinal microRNA expression profiles in weaned piglets. Plos one 11:e0162776. https://doi.org/10.1371/journal.pone.0162776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sharbati S, Friedlander MR, Sharbati J, Hoeke L, Chen W, Keller A, Stahler PF, Rajewsky N, Einspanier R (2010) Deciphering the porcine intestinal microRNA transcriptome. BMC Genomics 11:275. https://doi.org/10.1186/1471-2164-11-275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen Y, Chen J, Wang H, Shi J, Wu K, Liu S, Liu Y, Wu J (2013) HCV-induced miR-21 contributes to evasion of host immune system by targeting MyD88 and IRAK1. PLoS Pathog 9:e1003248. https://doi.org/10.1371/journal.ppat.1003248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang CH, Li K, Pfeffer SR, Pfeffer LM (2015) The type I IFN-induced miRNA, miR-21. Pharmaceuticals (Basel) 8:836–847. https://doi.org/10.3390/ph8040836

    Article  CAS  Google Scholar 

  29. Hino K, Tsuchiya K, Fukao T, Kiga K, Okamoto R, Kanai T, Watanabe M (2008) Inducible expression of microRNA-194 is regulated by HNF-1alpha during intestinal epithelial cell differentiation. RNA 14:1433–1442. https://doi.org/10.1261/rna.810208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Herrera-Uribe J, Zaldivar-Lopez S, Aguilar C, Luque C, Bautista R, Carvajal A, Claros MG, Garrido JJ (2018) Regulatory role of microRNA in mesenteric lymph nodes after Salmonella Typhimurium infection. Vet Res 49:9. https://doi.org/10.1186/s13567-018-0506-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chivukula RR, Shi G, Acharya A, Mills EW, Zeitels LR, Anandam JL, Abdelnaby AA, Balch GC, Mansour JC, Yopp AC, Maitra A, Mendell JT (2014) An essential mesenchymal function for miR-143/145 in intestinal epithelial regeneration. Cell 157:1104–1116. https://doi.org/10.1016/j.cell.2014.03.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liang G, Malmuthuge N, McFadden TB, Bao H, Griebel PJ, Stothard P, le Guan L (2014) Potential regulatory role of microRNAs in the development of bovine gastrointestinal tract during early life. Plos One 9:e92592. https://doi.org/10.1371/journal.pone.0092592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cui Y, Liu L, Dou X, Wang C, Zhang W, Gao K, Liu J, Wang H (2017) Lactobacillus reuteri ZJ617 maintains intestinal integrity via regulating tight junction, autophagy and apoptosis in mice challenged with lipopolysaccharide. Oncotarget 8:77489–77499. https://doi.org/10.18632/oncotarget.20536

  34. Jung MJ, Lee J, Shin NR, Kim MS, Hyun DW, Yun JH, Kim PS, Whon TW, Bae JW (2016) Chronic repression of mTOR complex 2 induces changes in the gut microbiota of diet-induced obese mice. Sci Rep 6:30887. https://doi.org/10.1038/srep30887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, Bae JW (2014) An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63:727–735. https://doi.org/10.1136/gutjnl-2012-303839

    Article  CAS  PubMed  Google Scholar 

  36. Dernowsek JA, Pereira MC, Fornari TA, Macedo C, Assis AF, Donate PB, Bombonato-Prado KF, Passos-Bueno MR, Passos GA (2017) Posttranscriptional interaction between miR-450a-5p and miR-28–5p and STAT1 mRNA triggers osteoblastic differentiation of human mesenchymal stem cells. J Cell Biochem 118:4045–4062. https://doi.org/10.1002/jcb.26060

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Y, Yu M, Dai M, Chen C, Tang Q, Jing W, Wang H, Tian W (2017) miR-450a-5p within rat adipose tissue exosome-like vesicles promotes adipogenic differentiation by targeting WISP2. J Cell Sci 130:1158–1168. https://doi.org/10.1242/jcs.197764

    Article  CAS  PubMed  Google Scholar 

  38. Weng Z, Wang D, Zhao W, Song M, You F, Yang L, Chen L (2011) microRNA-450a targets DNA methyltransferase 3a in hepatocellular carcinoma. Exp Ther Med 2:951–955. https://doi.org/10.3892/etm.2011.288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hsing EW, Shiah SG, Peng HY, Chen YW, Chuu CP, Hsiao JR, Lyu PC, Chang JY (2019) TNF-alpha-induced miR-450a mediates TMEM182 expression to promote oral squamous cell carcinoma motility. Plos one 14:e0213463. https://doi.org/10.1371/journal.pone.0213463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang L, Li L, Lv Y, Chen Q, Feng J, Zhao X (2018) Lactobacillus plantarum restores intestinal permeability disrupted by Salmonella infection in newly-hatched chicks. Sci Rep 8:2229. https://doi.org/10.1038/s41598-018-20752-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zou J, Guo P, Lv N, Huang D (2015) Lipopolysaccharide-induced tumor necrosis factor-alpha factor enhances inflammation and is associated with cancer (Review). Mol Med Rep 12:6399–6404. https://doi.org/10.3892/mmr.2015.4243

    Article  CAS  PubMed  Google Scholar 

  42. Zhang X, Zhang P, Li C, Li Y, Jin C, Zhang W (2015) Characterization of two regulators of the TNF-alpha signaling pathway in Apostichopus japonicus: LPS-induced TNF-alpha factor and baculoviral inhibitor of apoptosis repeat-containing 2. Dev Comp Immunol 48:138–142. https://doi.org/10.1016/j.dci.2014.10.001

    Article  CAS  PubMed  Google Scholar 

  43. Zang L, Ma Y, Huang W, Ling Y, Sun L, Wang X, Zeng A, Dahlgren RA, Wang C, Wang H (2019) Dietary Lactobacillus plantarum ST-III alleviates the toxic effects of triclosan on zebrafish (Danio rerio) via gut microbiota modulation. Fish Shellfish Immun 84:1157–1169. https://doi.org/10.1016/j.fsi.2018.11.007

    Article  CAS  Google Scholar 

  44. Wu Y, Wang B, Zeng Z, Liu R, Tang L, Gong L, Li W (2019) Effects of probiotics Lactobacillus plantarum 16 and Paenibacillus polymyxa 10 on intestinal barrier function, antioxidative capacity, apoptosis, immune response, and biochemical parameters in broilers. Poult Sci 98:5028–5039. https://doi.org/10.3382/ps/pez226

    Article  CAS  PubMed  Google Scholar 

  45. Hulst M, Gross G, Liu Y, Hoekman A, Niewold T, van der Meulen J, Smits M (2015) Oral administration of Lactobacillus plantarum 299v modulates gene expression in the ileum of pigs: prediction of crosstalk between intestinal immune cells and sub-mucosal adipocytes. Genes Nutr 10. https://doi.org/10.1007/s12263-015-0461-7

Download references

Funding

This study was funded by the Fundamental and Frontier Research, Project of Chongqing (cstc2018jcyjAX0323), the National Key Research and Development Program of China (2017YFD0500506), and the Agricultural Development Program of Chongqing (19,506).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxiu Huang.

Ethics declarations

Ethics Approval

All research involving animals was performed according to the Regulations for the Administration of Affairs Concerning Experimental Animals. The Institute Ethics Committee of the Chongqing Academy of Animal Science approved the experimental procedures in this study (Approval Number: xky-20180725).

Conflicts of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Sun, Q., Wang, J. et al. Lactobacillus Plantarum 299v Changes miRNA Expression in the Intestines of Piglets and Leads to Downregulation of LITAF by Regulating ssc-miR-450a. Probiotics & Antimicro. Prot. 13, 1093–1105 (2021). https://doi.org/10.1007/s12602-021-09743-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09743-1

Keywords

Navigation