Skip to main content
Log in

Carbon nanotubes: a review on properties, synthesis methods and applications in micro and nanotechnology

  • Review Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This research article discusses the types of carbon nanotubes and some related properties, synthesis methods and applications. In this research article, the specificities of SWCNTs as well as MWCNTs are described along with the extraordinary properties of carbon nanotubes such as electrical conductance, resistivity, and thermal conductivity in the direction of axis of the tube. Overview of certain specific methods for the growth of carbon nanotubes has also been reviewed. Previously available methods for the formation of CNTs are also described which include: arc discharge, laser ablation, chemical vapor deposition (CVD) and plasma enhanced chemical vapor deposition (PECVD). Carbon nanotubes have a number of applications in the field of electronics, biomedicine, and chemical sensors etc. Some of the applications are also briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ajayan P, Zhou O (2001) Applications of carbon nanotubes. Carbon Nanotubes 391–425

  • Akasaka T, Watari F, Sato Y, Tohji K (2006) Apatite formation on carbon nanotubes. Mater Sci Eng C 26:675–678

    Article  Google Scholar 

  • Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192

    Article  Google Scholar 

  • Batra R, Sears A (2007) Continuum models of multi-walled carbon nanotubes. Int J Solids Struct 44:7577–7596

    Article  MATH  Google Scholar 

  • Bell MS, Teo KBK, Lacerda RG, Milne WI, Hash DB, Meyyappan M (2006) Carbon nanotubes by plasma-enhanced chemical vapor deposition. Pure Appl Chem 78:1117–1126

    Article  Google Scholar 

  • Beumer K (2016) Broadening nanotechnology’s impact on development. Nat Nanotechnol 11:398–400

    Article  Google Scholar 

  • Bingshe Xu, Li T, Liu X, Lin X, Li J (2007) Growth of well-aligned carbon nanotubes in a plasma system using ferrocene solution in ethanol. Thin Solid Films 515:6726–6729

    Article  Google Scholar 

  • Daenen M, De Fouw RD, Hamers B, Janssen P, Schouteden K, Veld MAJ (2003) The wondrous world of carbon nanotubes. Eindhoven University of Technology, pp 1–35

  • Durrani YA, Riesgo T, Khan MI, Mahmood T (2016) Power analysis approach and its application to IP-based SoC design. In: COMPEL—the international journal for computation and mathematics in electrical and electronic engineering, vol 35, issue 3

  • Endo M, Hayashi T, Ahm Kim Y, Muramatsu H (2008) Development and application of carbon nanotubes. AAPPS Bull 18:3

    Google Scholar 

  • Ford N (2007) Plasma enhanced growth of carbon nanotubes

  • Grzybowski BA, Huck WTS (2016) The nanotechnology of life-inspired systems. Nat Nanotechnol 11:585–592

    Article  Google Scholar 

  • Harris P (2007) Solid state growth mechanisms for carbon nanotubes. Carbon 45:229–239

    Article  Google Scholar 

  • Honda S, Katayama M, Lee K-Y, Ikuno T, Ohkura S, Oura K, Furuta H, Hirao T (2003) Low temperature synthesis of aligned carbon nanotubes by inductively coupled plasma chemical vapor deposition using pure methane. Jpn J Appl Phys Part 2 Lett 42:441–443

    Article  Google Scholar 

  • Kang I, Heung YY, Kim JH, Lee JW, Gollapudi R, Subramaniam S, Narasimhadevara S, Hurd D, Kirikera GR, Shanov V, Schulz MJ, Shi D, Boerio J, Mall S, Ruggles-Wren M (2006) Introduction to carbon nanotube and nanofiber smart materials. Compos B Eng 37:382–394

    Article  Google Scholar 

  • Khan MI, Lin F (2014) Comparative analysis and design of harmonic aware low power latches and flip-flops. In: IEEE 10th international conference on electron devices and solid-state circuits (EDSSC), Chengdu

  • Khan MI, Buzdar AR, Lin F (2014) Ballistic transport modeling in advanced transistors. In: 12th IEEE international conference on solid-state and integrated circuit technology (ICSICT), Guilin

  • Khan MI, Shoukat R, Mukherjee K, Dong H (2017) A review on pH sensitive materials for sensors and detection methods. Microsyst Technol 23(10):4391–4404

    Article  Google Scholar 

  • Khan MI, Qamar A, Shabbir F, Shoukat R (2017) Design, development and implementation of Low power and high speed A/D converter in submicron CMOS technology. Microsyst Technol 23(12):6005–6014

    Article  Google Scholar 

  • Khan MI, Shoukat R, Mukherjee K, Dong H (2018a) Analysis of harmonic contents of switching waveforms emitted by the ultra-high speed digital CMOS integrated circuits for use in future micro/nano systems applications. Microsyst Technol 24(2):1201–1206

    Article  Google Scholar 

  • Khan MI, Dong H, Shabbir F, Shoukat R (2018b) Embedded passive components in advanced 3D chips and micro/nano electronic systems. J Microsyst Technol 24(2):869–877

    Article  Google Scholar 

  • Kis A, Zettl A (2008) Nanomechanics of carbon nanotubes. Philos Trans A 366:1591

    Article  Google Scholar 

  • Kreupl F (2008) Carbon nanotubes in microelectronic applications, carbon nanotube devices: properties modeling integration and applications. Wiley, New York

    Google Scholar 

  • Kreupl F, Graham AP, Duesberg GS, Steinhögl W, Liebau M, Unger E, Hönlein W (2002) Carbon nanotubes in interconnect applications. Microelectron Eng 64:399–408

    Article  Google Scholar 

  • Kuzmany H, Kukovecz A, Simon F, Holzweber M, Kramberger Ch, Pichler T (2004) Functionalization of carbon nanotubes. Synth Met 141:113–122

    Article  Google Scholar 

  • Li ZH, Wang M, Yang B, Xu YB (2007a) Preparation of parallel arrayed carbon nanotube film and its structure research. Inorg Mater 43:696–699

    Article  Google Scholar 

  • Li N, Chen X, Stoica L, Xia W, Qian J, Aßmann J, Schuhmann W, Muhler M (2007b) The catalytic synthesis of three-dimensional hierarchical carbon nanotube composites with high electrical conductivity based on electrochemical iron deposition. Adv Mater 19:2957–2960

    Article  Google Scholar 

  • Lin CC, Leu IC, Yen JH, Hon MH (2004) Sheath-dependent orientation control of carbon nanofibres and carbon nanotubes during plasma-enhanced chemical vapour deposition. Nanotechnology 15:176

    Article  Google Scholar 

  • Lin YY, Wei HW, Leou KC, Lin H, Tung CH, Wei MT, Lin C, Tsai CH (2006) Experimental characterization of an inductively coupled acetylene/hydrogen plasma for carbon nanofiber synthesis. J Vac Sci B Microelectron Nanometer Struct 24:97

    Article  Google Scholar 

  • Liu X (2006) Synthesis, devices and applications of carbon nanotubes. University Of Southern California

  • Makabe T, Petrovi Z (2006) Plasma electronics: applications in microelectronic device fabrication. Inst of Physics Pub Inc

  • Melechko AV, Merkulov VI, McKnight TE, Guillorn MA, Klein KL, Lowndes DH, Simpson ML (2005) Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J Appl Phys 97:041301

    Article  Google Scholar 

  • Peng S et al (2003) Carbon nanotube chemical and mechanical sensors, pp 1–8

  • Point S, Minea T, Besland M-P, Granier A (2006) Characterization of carbon nanotubes and carbon nitride nanofibers synthesized by PECVD. Eur Phys J Appl Phys 34:157–163

    Article  Google Scholar 

  • Robertson J (2007) Growth of nanotubes for electronics. Mater Today 10:36–43

    Article  Google Scholar 

  • Rohmund F, Falk LKL, Campbell EEB (2000) A simple method for the production of large arrays of aligned carbon nanotubes. Chem Phys Lett 328:369–373

    Article  Google Scholar 

  • Salvetat J-P, Bonard J-M, Thomson NH, Kulik AJ, Forró L, Benoit W, Zuppiroli L (1999) Mechanical properties of carbon nanotubes. Appl Phys A Mater Sci Process 69:255–260

    Article  Google Scholar 

  • Sanvito S, Kwon YK, Tomanek D, Lambert CJ (2000) Fractional quantum conductance in carbon nanotubes. Phys Rev Lett 84:1974–1977

    Article  Google Scholar 

  • Sato H, Sakai T, Suzuki A, Kajiwara K, Hata K, Saito Y (2008) Growth control of carbon nanotubes by plasma enhanced chemical vapor deposition. Vacuum 83:515–517

    Article  Google Scholar 

  • Seetharamappa J, Yellappa S, D’Souza F (2006) Carbon nanotubes. Electrochemical Society Interface

  • Seo JW, Couteau E, Umek P, Hernadi K, Marcoux P, Lukić B, Mikó C, Milas M, Gaál R, Forró L (2003) “Synthesis and manipulation of carbon nanotubes. N J Phys 5:120

    Article  Google Scholar 

  • Shiratori Y, Hiraoka H, Yamamoto M (2004) Vertically aligned carbon nanotubes produced by radio-frequency plasma-enhanced chemical vapor deposition at low temperature and their growth mechanism. Mater Chem Phys 87:31–38

    Article  Google Scholar 

  • Shoukat R, Khan MI (2018) Synthesis of vertically aligned carbon nanofibers using inductively coupled plasma enhanced chemical vapor deposition. Electr Eng 100(2):997–1002

    Article  Google Scholar 

  • Shoukat R, Khan MI (2018a) Nanotechnology based electrical control and navigation system for worm guidance using electric field gradient. Microsyst Technol 24(2):989–993

    Article  Google Scholar 

  • Shoukat R, Khan MI (2018b) Design and development of a clip building block system for MEMS. Microsyst Technol 24(2):1025–1031

    Article  Google Scholar 

  • Shoukat R, Khan MI (2019) Synthesis of nanostructured based carbon nanowalls at low temperature using inductively coupled plasma chemical vapor deposition (ICP-CVD). Microsyst Technol 25:4439–4444

    Article  Google Scholar 

  • Shoukat R, Khan MI (2020) Amalgamation of aligned carbon nanostructures at low temperature and the synthesis of vertically aligned carbon nanofibers (CNFs). Microsyst Technol 26:1521–1529

    Article  Google Scholar 

  • Shoukat R, Khan MI (2017) Growth of nanotubes using IC-PECVD as benzene carbon carrier. Microsyst Technol 23(12):5447–5453

    Article  Google Scholar 

  • Sinha N, Ma J, Yeow JTW (2006) Carbon nanotube-based sensors. J Nanosci Nanotechnol 6:573–590

    Article  Google Scholar 

  • Sun X, Yu RQ, Xu GQ, Hor TSA, Ji W (1998) Broadband optical limiting with multiwalled carbon nanotubes. Appl Phys Lett 73:3632

    Article  Google Scholar 

  • Sunden E (2006) Carbon nanotube synthesis for microsystems applications

  • Teo KBK, Lee S-B, Chhowalla M, Semet V, Binh VT, Groening O, Castignolles M, Loiseau A, Pirio G, Legagneux P, Pribat D, Hasko DG, Ahmed H, Amaratunga GAJ, Milne WI (2003) Plasma enhanced chemical vapour deposition carbon nanotubes/nanofibres—how uniform do they grow? Nanotechnology 14:204

    Article  Google Scholar 

  • Tzeng S, Wang P, Wu T, Chen K, Chyou S, Lee W, Chen C (2006) Formation of loops on the surface of carbon nanofibers synthesized by plasma-enhanced chemical vapor deposition using an inductively coupled plasma reactor. J Mater Res 21(10):2440–2443

    Article  Google Scholar 

  • Vajtai R, Wei BQ, Ajayan PM (2004) Controlled growth of carbon nanotubes. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 362:2143

    Article  Google Scholar 

  • Wei HW, Leou KC, Wei MT, Lin YY, Tsai CH (2005) Effect of high-voltage sheath electric field and ion-enhanced etching on growth of carbon nanofibers in high-density plasma chemical-vapor deposition. J Appl Phys 98:044313

    Article  Google Scholar 

  • Xia ZH, Guduru PR, Curtin WA (2007) Enhancing mechanical properties of multiwall carbon nanotubes via sp3 interwall bridging. Phys Rev Lett 98:245501

    Article  Google Scholar 

  • Ye Z, Jingguo L, Zhengjun Z (2003) Film growth of pillars of multi-walled carbon nanotubes. J Phys Condens Matter 15:L565

    Article  Google Scholar 

  • Yen JH, Leu IC, Lin CC, Hon MH (2005) Synthesis of well-aligned carbon nanotubes by inductively coupled plasma chemical vapor deposition. Appl Phys A Mater Sci Process 80:415–421

    Article  Google Scholar 

  • Zhong H, Lukes J (2006) Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling. Phys Rev B 74:125403

    Article  Google Scholar 

  • Zhou M, Luo P, Li A, Wu Y, Khan MI, Lyu J, Li F, Li G (2018) Fabrication of silica membrane through surface‐induced condensation on porous block copolymer. In: Chemistry SELECT communication (Wiley), vol 3, September 7, issue 33

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizwan Shoukat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoukat, R., Khan, M.I. Carbon nanotubes: a review on properties, synthesis methods and applications in micro and nanotechnology. Microsyst Technol 27, 4183–4192 (2021). https://doi.org/10.1007/s00542-021-05211-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-021-05211-6

Navigation