Skip to main content
Log in

Retrogression and Reaging of AA7075 and AA6013 Aluminum Alloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Retrogression and reaging (RRA) is of interest to the automotive industry for manufacturing components of high-strength aluminum alloys. RRA heat treatments are investigated for AA7075-T6 and AA6013-T6 materials. Retrogression is demonstrated to be a thermally activated process reasonably characterized with a single activation energy. Activation energies for retrogression are measured as 97 ± 7 and 160 ± 30 kJ/mol for AA7075-T6 and AA6013-T6, respectively. Critical retrogression times, tR* and t maxR , are defined and measured across a range of retrogression temperatures. These data are used with the concept of reduced time to predict combinations of temperature and time that produce successful retrogression heat treatments. Recommended retrogression heat treatments are 200 °C for 3 to 12 minutes for AA7075-T6 and 240 °C for 7 minutes for AA6013-T6. Data from reaging heat treatments confirm a significant RRA response in AA6013. Recommended reaging heat treatments are 120 °C for 24 hours for retrogressed AA7075 and 190 °C for 1 hour for retrogressed AA6013. A reaging heat treatment that simulates the automotive paint-bake cycle, 185 °C for 25 minutes, is almost as effective as the recommended reaging heat treatment for AA6013 but is significantly less effective than the recommended reaging heat treatment for AA7075.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B.M. Cina: US Patent 3856584, 1974.

  2. B. Cina and B. Ranish: Aluminum Industrial Products, 1974, pp. 1–29.

  3. W. Wallace, J. C. Beddoes, and M. C. DeMalherbe: Canadian Aeronautics and Space Journal, 1978, vol. 27, no. 3, pp. 222-232.

    Google Scholar 

  4. K. Rajan, W. Wallace, and J. C. Beddoes: J. Mater. Sci., 1982, vol. 17, pp. 2817-2824.

    Article  CAS  Google Scholar 

  5. N. C. Danh, K. Rajan, and W. Wallace: Metall. Trans. A, 1983, vol. 14A, no. 9, pp. 1843-1850.

    Article  Google Scholar 

  6. J. K. Park: Mater. Sci. Eng. A, 1988, vol. 103A, no. 2, pp. 223-231.

    Article  Google Scholar 

  7. T. A. Ivanoff, J. T. Carter, L. G. Hector, Jr., and E. M. Taleff: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 1545-1561.

    Article  Google Scholar 

  8. J. K. Park and A. J. Ardell: Metall. Trans. A, 1984, vol. 15A, pp. 1531-1543.

    Article  CAS  Google Scholar 

  9. J. M. Popazien: Mater. Sci. Eng., 1986, vol. 79, pp. 97-104.

    Article  Google Scholar 

  10. M. Talianker and B. Cina: Metall. Trans. A, 1989, vol. 20, no. 10, pp. 2087-2092.

    Article  Google Scholar 

  11. J. P. Immarigeon, R. T. Holt, A. K. Koul, L. Zhao, W. Wallace, and J. C. Beddos: Mater. Charact., 1995, vol. 35, pp. 41-67.

    Article  CAS  Google Scholar 

  12. M. B. Kannan, P. B. Srinivasan, and V. S. Paja: Stress Corrosion Cracking, Woodhead Publishing, Cambridge, UK, 2011, 307-340.

    Book  Google Scholar 

  13. R. N. Lumley, A. J. Morton, R. G. O’Donnell, and I. J. Polmear: Heat Treat. Prog., 2005, vol. 5, no. 2, pp. 23-29.

    CAS  Google Scholar 

  14. The Aluminum Automotive Manual (European Aluminum Association, Brussels, Belgium, 2002). https://www.european-aluminium.eu/resource-hub/aluminium-automotive-manual/. Accessed 5 Feb 2020

  15. J.C. Benedyk: US Patent 5911844, 1999.

  16. J. C. Benedyk and S. Mostovoy: Light Met. Age, 1997, vol. 55, no. 1-2, pp. 28-33.

    CAS  Google Scholar 

  17. R.M. Kelly: US Patent 20150020927A1, 2015.

  18. P.E. Krajewski: SAE Tech. Pap. Ser., no. 2006-01-0984, 2006.

  19. R. S. Long, E. Boettcher, and D. Crawford: J. Mater., 2017, vol. 69, no. 12, pp. 2635-2639.

    CAS  Google Scholar 

  20. N.R. Harrison and S.G. Luckey: SAE Tech. Pap. Ser., no. 2014-01-0981, 2014.

  21. J. Mendiguren, E. Saenz de Arganodona, and L. Galdos: IOP Conf. Ser.: Mater. Sci. Eng., vol. 159 no. 012026, 2016.

  22. A. Keci, N.R. Harrison, and S.G. Luckey: SAE Tech. Pap. Ser., no. 2014-01-0984, 2014.

  23. H. Wang, Y. B. Luop, P. Friedman, M. H. Chen, & L. Gao: Trans. Nonferrous Met. Soc. China, 2012, vol. 22, no. 7, pp. 1-7.

    Article  Google Scholar 

  24. W. Xiao, B. Wang, and K. Zheng: Int. J. Adv. Manuf. Tech., 2017, vol. 92, pp. 3299-3309.

    Article  Google Scholar 

  25. T. Moons, P. Ratchev, P. de Smet, B. Verlinden, and P. Van Houtte: Scr. Mater., 1996, vol. 35, no. 8, pp. 939–45.

    Article  CAS  Google Scholar 

  26. E.M. Taleff, P.J. Nevland, and P.E. Krajewski: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1119-1130.

    Article  CAS  Google Scholar 

  27. ASM Handbook Committee: ASM Handbook, Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International, Materials Park, OH, 1990, pp. 62–122.

  28. Alcoa Inc.: Alcoa Technical Fact Sheet: Alloy 6013 sheet: Maximum strength 6xxx series sheet, Alcoa Inc., Bettendorf, Iowa, 2017

  29. K. Rader, J. Carter, L. Hector, Jr., and E. Taleff: TMS 2019: Light Met. 2019, 2019, pp. 159-64.

  30. L. Zhuang, R. de Haan, J. Bottema, C. T. W. Lahaye, and P. De Smet: Mater. Sci. Forum, 2000, vol. 331-337, pp. 1309-1314.

    Article  Google Scholar 

  31. D. C. Balderach, J. A. Hamilton, E. Leung, M. C. Tejeda, J. Qiao, and E. M. Taleff: Mater. Sci. Eng., 2002, vol. A339, pp. 194-204.

    Article  Google Scholar 

  32. Alcoa Inc.: Alcoa Technical Fact Sheet: Alloy 7075 Plate and Sheet, Alcoa Inc., Bettendorf, Iowa. 2017

  33. MIL-H-6088G Military Specification: Heat Treatment of Aluminum Alloys, 1991, http://everyspec.com/MIL-SPECS/MIL-SPECS-MIL-H/MIL-H-6088_NOTICE-1_17474/. Accessed 4 May 2020.

  34. S. Arrhenius: Z. Phys. Chem. (Leipzig), 1889, vol. 4, no. 1, pp. 96-116.

  35. K. Rader, T. Ivanoff, H. Shin, J. Carter, L. Hector, Jr., and E. Taleff: TMS 2018: Light Met. 2018, 2018, pp. 241-46.

  36. ANSI B74.10: United Abrasives Manufacturers Association, Cleveland, OH, 2015.

  37. UAMA B74.10-2015: United Abrasives Manufacturers Association, Cleveland, OH, 2015.

  38. ASTM E92-17: ASTM International, West Conshohocken, PA, 2017.

  39. G.E. Totten and D.S. MacKenzie (eds.): ASM Handbook, Volume 4E: Heat Treating of Nonferrious Alloys, ASM International, Materials Park, OH, 2016, pp. 289–95.

  40. H. Kuhn and D. Medlin (eds.): ASM Handbook, Volume 8: Mechanical Testing and Evaluation. ASM International, Materials Park, OH, 2000, pp. 260–77.

  41. S. Sato and T. Endo: J. Jpn. Inst. Light Met. (Tokyo), 1986, vol. 36, no. 1, pp. 29–35.

  42. ASTM E18-20: ASTM International, West Conshohocken, PA, 2020.

  43. M. J. Sarink: Int. Mater. Rev., 2004, vol. 49, no. 3-4, pp. 191-226.

    Article  Google Scholar 

  44. R. Braun: Mater. Charact., 2006, vol. 56, pp. 85-95.

    Article  CAS  Google Scholar 

  45. C. Barbosa, J. M. A. Rebello, O. Acselrad, J. Dille, and J.-L. Delplancke: Z. Metall., 2002, vol. 93, no. 3, pp. 208-211.

    Article  CAS  Google Scholar 

  46. M. Tanaka and T. Warner: Rev. Metall., 2003, vol. 100, no. 5, pp. 463-469.

    Article  CAS  Google Scholar 

  47. The MathWorks, Inc.: MATLAB [Software], Version R2016b, 2016, https://www.mathworks.com/products/matlab

  48. J. Pahk, Summary of rules on propagation of error, 2008, https://sites.fas.harvard.edu/~scphys/nsta/sc9.htm. Accessed 17 April 2018

  49. P. Barczy and F. Tranta: Scand. J. Metall., 1975, vol. 4, no. 6, pp. 284-288.

    CAS  Google Scholar 

  50. J. K. Park and A. J. Ardell: Metall. Trans. A, 1983, vol. 14A, pp. 1957-1966.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Hyunwook Shin and Diego Hernandez for their assistance in obtaining hardness data. The authors also thank Hugo Celio, Li Shi, Iskandar Kholmanov, and Evan Fleming for access to and assistance with DSC instruments. This work was funded by the National Science Foundation under GOALI Grant Number CMMI-1634495. One author, K. E. Rader, expresses gratitude to General Motors for support during summer research activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine E. Rader.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 27, 2020; accepted December 14, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rader, K.E., Carter, J.T., Hector, L.G. et al. Retrogression and Reaging of AA7075 and AA6013 Aluminum Alloys. Metall Mater Trans A 52, 1006–1018 (2021). https://doi.org/10.1007/s11661-020-06133-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06133-0

Navigation