Skip to main content
Log in

Membrane Homeostasis: The Role of Actin Cytoskeleton

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Introduction

The plasma membrane of a cell undergoes continuous deformations and turning-over of its constituents required for a diverse set of functions. And yet, the membrane retains its steady-state surface tension—without which these functions are adversely affected.

Objectives

In this review, we discuss how the establishment and maintenance of the homeostatic state of the membrane has a major contribution from the actin cytoskeleton. The regulation of tension at the global (or cellular) scale is extensively studied for the past few decades, leading to our understanding of how actin polymerization forces, myosin-II based contractile forces, and ezrin-mediated attachment to the membrane—each have a separate and sometimes multiple possible effects on membrane tension.

Conclusions

Drawing examples from cell motility and blebbing cells, we highlight how the dynamics of the cytoskeleton decides if the steady-state tension has a uniform profile, front-rear gradients, or temporally varying tension profiles in single cells. Non-invasive studies open up new avenues especially allowing the investigations focusing on local regulation of tension—at the plasma membrane and inside cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:

source suffers reflection due to a difference in refractive indices. A camera is used for capturing interference images over time which helps to measure fluctuations and tension. IRM can create maps of tension and requires measurement over 40–100 s. d A cartoon of a migrating cell with front and rear end showing a gradient of membrane tension due to incorporation of FliptR, a molecular probe. The changes can be captured by fluorescence lifetime imaging (FLIM). The probe can detect tension changes because of the fluorescence lifetimes alterations created due to tension planarizing the fluorescent groups. Detecting tension differences by FliptR is a fast process which can used be used all over the cell membrane.

Figure 4:

Similar content being viewed by others

References

  1. Morris CE, Homann U (2001) Cell surface area regulation and membrane tension. Membr Biol 179:79–102

    Article  CAS  Google Scholar 

  2. Harris H (1999) The birth of the cell. Yale University Press, New Haven and London

    Google Scholar 

  3. Grew N (1682) The anatomy of plants. (W. Rawlins). doi:https://doi.org/10.5962/bhl.title.4

  4. Hooke R (1665) Micrographia: or some physiological descriptions of minute bodies made by magnifying glasses : with observations and inquiries thereupon. Royal Society, London

  5. Schwann T (1839) Mikroskopische Untersuchungen über die Uebereinstimmung in der Struktur und dem Wachsthum der Thiere und Pflanzen. Sander

  6. Stillwell W (2013) Membrane History. in An Introduction to Biological Membranes: From Bilayers to Rafts

  7. Pockels A (1891) Surface tension. Nature 43:437–439

    Article  Google Scholar 

  8. Langmuir I (1917) The constitution and fundamental properties of solids and liquids. II. Liquids. J Am Chem Soc 39:1848–1906

    Article  CAS  Google Scholar 

  9. Overton E (1899) Ueber die allgemeinen osmotischen Eigenschaften der Zelle, ihre vermutlichen Ursachen und ihre Bedeutung für die Physiologie. Zürich 64:87–136

    Google Scholar 

  10. Fricke H (1925) The electric capacity of suspensions with special reference to blood. J Gen Physiol 9:137–152

    Article  CAS  Google Scholar 

  11. Fricke H, Curtis HJ (1934) Electric impedance of suspensions of yeast cells. Nature 134:102–103

    Article  Google Scholar 

  12. Gorter E, Grendel F (1925) On bimolecular layers of lipoids on the chromocytes of the blood. J Exp Med 41:439–444

    Article  CAS  Google Scholar 

  13. Danielli JF, Davson H (1935) A contribution to the theory of permeability of thin films. J Cell Comp Physiol 5:495–508

    Article  CAS  Google Scholar 

  14. Robertson JD (1981) Membrane structure. J Cell Biol 91:189–204

    Article  CAS  Google Scholar 

  15. Escribá PV (2017) Membrane-lipid therapy: a historical perspective of membrane-targeted therapies—From lipid bilayer structure to the pathophysiological regulation of cells. Biochim Biophys Acta Biomembr 1859:1493–1506

    Article  Google Scholar 

  16. Kalkan KT, Esrefoglu M (2020) The cell membrane: a historical narration. Bezmialem Sci 8:81–88

    Article  Google Scholar 

  17. Lombard J (2014) Once upon a time the cell membranes: 175 years of cell boundary research. Biol Direct 9:1–35

    Article  Google Scholar 

  18. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science (80-) 175:720–731

    Article  CAS  Google Scholar 

  19. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  Google Scholar 

  20. Wohlfarth-Bottermann KE (1964) Differentiations of the ground cytoplasm and their significance for the generation of the motive force of ameboid movement. In: Primitive motile systems in cell biology, pp 79–109 (Elsevier, 1964). doi:https://doi.org/10.1016/b978-0-12-395681-1.50013-8

  21. Ervasti JM, Campbell KP (1993) Dystrophin and the membrane skeleton. Curr Opin Cell Biol 5:82–87

    Article  CAS  Google Scholar 

  22. Bretscher A (1983) Purification of an 80,000-dalton protein that is a component of the isolated microvillus cytoskeleton, and its localization in nonmuscle cells. J Cell Biol 97:425–432

    Article  CAS  Google Scholar 

  23. Tsukita S, Hieda Y, Tsukita S (1989) A new 82-kD barbed end-capping protein (radixin) localized in the cell-to-cell adherens junction: purification and characterization. J Cell Biol 108:2369–2382

    Article  CAS  Google Scholar 

  24. Lankes WT, Furthmayr H (1991) Moesin: a member of the protein 4.1-talin-ezrin family of proteins. Proc Natl Acad Sci USA 88:8297–8301

    Article  CAS  Google Scholar 

  25. Cohen MH, Turnbull D (1959) Molecular transport in liquids and glasses. J Chem Phys 31:1164–1169

    Article  CAS  Google Scholar 

  26. Frye LD, Edidin M (1970) The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. J Cell Sci 7:319–335

    Article  CAS  Google Scholar 

  27. Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW (1976) Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16:1055–1069

    Article  CAS  Google Scholar 

  28. Jékely G (2014) Origin and evolution of the self-organizing cytoskeleton in the network of eukaryotic organelles. Cold Spring Harb Perspect Biol 6

  29. Wegner A (1976) Head to tail polymerization of actin. J Mol Biol 108:139–150

    Article  CAS  Google Scholar 

  30. Mullins RD, Heuser JA, Pollard TD (1998) The interaction of Arp2/3 complex with actin: Nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc Natl Acad Sci USA 95:6181–6186

    Article  CAS  Google Scholar 

  31. Cooper JA, Schafer DA (2000) Control of actin assembly and disassembly at filament ends. Curr Opin Cell Biol 12:97–103

    Article  CAS  Google Scholar 

  32. Vignaud T, Blanchoin L, Théry M (2012) Directed cytoskeleton self-organization. Trends Cell Biol 22:671–682

    Article  CAS  Google Scholar 

  33. Kühne W (1864) Untersuchungen über das Protoplasma und die Contractilität. (W. Engelmann). doi:https://doi.org/10.5962/bhl.title.46515.

  34. Roth TF, Porter KR (1964) Yolk protein uptake in the oocyte of the mosquito aedes aegyptil. J Cell Biol 20:313–332

    Article  CAS  Google Scholar 

  35. Goldstein JL, Anderson RGW, Brown MS (1979) Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature 279:679–685

    Article  CAS  Google Scholar 

  36. Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24:156–159

    Article  CAS  Google Scholar 

  37. Dai J, Sheetz MP (1995) Regulation of endocytosis, exocytosis, and shape by membrane tension. In: Cold Spring Harbor Symposia on Quantitative Biology vol 60:567–571 (Cold Spring Harbor Laboratory Press)

  38. Evans E, Yeung A (1989) Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys J 56:151–160

    Article  CAS  Google Scholar 

  39. Hochmuth RM (2000) Micropipette aspiration of living cells. J Biomech 33:15–22

    Article  CAS  Google Scholar 

  40. Krieg M et al (2008) Tensile forces govern germ-layer organization in zebrafish. Nat Cell Biol 10:429–436

    Article  CAS  Google Scholar 

  41. Zilker A, Ziegler M, Sackmann E (1992) Spectral analysis of erythrocyte flickering in the 0.3–4-μm-1 regime by microinterferometry combined with fast image processing. Phys. Rev. A 46:7998–8001

    Article  CAS  Google Scholar 

  42. Dai J, Sheetz MP, Wan X, Morris CE (1998) Membrane tension in swelling and shrinking molluscan neurons. J Neurosci 18:6681–6692

    Article  CAS  Google Scholar 

  43. Blowers R, Clarkson EM, Maizels M (1951) Flicker phenomenon in human erythrocytes. J Physiol 113:228–239

    Article  CAS  Google Scholar 

  44. Colom A et al (2018) A fluorescent membrane tension probe. Nat Chem 10:1118–1125

    Article  CAS  Google Scholar 

  45. Nelson DL, Cox MM (2013) Lehninger principles of biochemistry. Winslow, Susan

    Google Scholar 

  46. Nicolson GL (2014) The fluid—mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim Biophys Acta Biomembr 1838:1451–1466

    Article  CAS  Google Scholar 

  47. Lodish H et al (2000) Membrane Proteins. in Molecular Cell Biology (W. H. Freeman)

  48. Yang Y, Lee M, Fairn GD (2018) Phospholipid subcellular localization and dynamics. J Biol Chem 293:6230–6240

    Article  CAS  Google Scholar 

  49. Raffy S, Teissié J (1999) Control of lipid membrane stability by cholesterol content. Biophys J 76:2072–2080

    Article  CAS  Google Scholar 

  50. Houk AR et al (2012) Membrane tension maintains cell polarity by confining signals to the leading edge during neutrophil migration. Cell 148:175–188

    Article  CAS  Google Scholar 

  51. Gauthier NC, Fardin MA, Roca-Cusachs P, Sheetz MP, Mogilner A (2011) Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading. PNAS 108:14467–14472

    Article  CAS  Google Scholar 

  52. Boulant S, Kural C, Zeeh J-C, Ubelmann F, Kirchhausen T (2012) Actin dynamics counteract membrane tension during clathrin- mediated endocytosis. Nat Cell Biol 13:1124–1131

    Article  Google Scholar 

  53. Sukharev S (1999) Mechanosensitive channels in bacteria as membrane tension reporters. FASEB J 13:S55–S61

    Article  CAS  Google Scholar 

  54. Denk W, Webb WW (1992) Forward and reverse transduction at the limit of sensitivity studied by correlating electrical and mechanical fluctuations in frog saccular hair cells. Hear Res 60:89–102

    Article  CAS  Google Scholar 

  55. Charras GT, Williams BA, Sims SM, Horton MA (2004) Estimating the sensitivity of mechanosensitive ion channels to membrane strain and tension. Biophys J 87:2870–2884

    Article  CAS  Google Scholar 

  56. Zhao H, Pykäläinen A, Lappalainen P (2011) I-BAR domain proteins: Linking actin and plasma membrane dynamics. Curr Opin Cell Biol 23:14–21

    Article  CAS  Google Scholar 

  57. Sorre B et al (2012) Nature of curvature coupling of amphiphysin with membranes depends on its bound density. Proc Natl Acad Sci USA 109:173–178

    Article  CAS  Google Scholar 

  58. Peleg B, Disanza A, Scita G, Gov N (2011) Propagating cell-membrane waves driven by curved activators of actin polymerization. PLoS One 6

  59. Scherfeld D, Kahya N, Schwille P (2003) Lipid dynamics and domain formation in model membranes composed of ternary mixtures of unsaturated and satur1ated phosphatidylcholines and cholesterol. Biophys J 85:3758–3768

    Article  CAS  Google Scholar 

  60. Crane JM, Tamm LK (2004) Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes. Biophys J 86:2965–2979

    Article  CAS  Google Scholar 

  61. Dinic J, Ashrafzadeh P, Parmryd I (2013) Actin filaments attachment at the plasma membrane in live cells cause the formation of ordered lipid domains. Biochim Biophys Acta - Biomembr 1828:1102–1111

    Article  CAS  Google Scholar 

  62. Chichili GR, Rodgers W (2009) Cytoskeleton-membrane interactions in membrane raft structure. Cell Mol Life Sci 66:2319–2328

    Article  CAS  Google Scholar 

  63. Stillwell W (2013) An introduction to biological membranes : from bilayers to rafts. Elsevier/Academic Press, New York

    Book  Google Scholar 

  64. Fahey, P. F. et al. Lateral diffusion in planar lipid bilayers. Science (80-. ). 195, 305–306 (1977).

  65. Alberts, B. et al. The Lipid Bilayer. in Molecular Biology of the Cell (eds. Anderson, M. & Granum, S.) (Garland Science, 2002).

  66. Jan Akhunzada, M. et al. Interplay between lipid lateral diffusion, dye concentration and membrane permeability unveiled by a combined spectroscopic and computational study of a model lipid bilayer. Sci. Rep. 9, 1–12 (2019).

  67. Rose M, Hirmiz N, Moran-Mirabal JM, Fradin C (2015) Lipid diffusion in supported lipid bilayers: A comparison between line-scanning fluorescence correlation spectroscopy and single-particle tracking. Membranes (Basel) 5:702–721

    Article  CAS  Google Scholar 

  68. Pinkwart K et al (2019) Nanoscale dynamics of cholesterol in the cell membrane. J Biol Chem 294:12599–12609

    Article  CAS  Google Scholar 

  69. Ritchie K, Iino R, Fujiwara T, Murase K, Kusumi A (2003) The fence and picket structure of the plasma membrane of live cells as revealed by single molecule techniques. Mol Membr Biol 20:13–18

    Article  CAS  Google Scholar 

  70. Suzuki K, Ritchie K, Kajikawa E, Fujiwara T, Kusumi A (2005) Rapid hop diffusion of a G-protein-coupled receptor in the plasma membrane as revealed by single-molecule techniques. Biophys J 88:3659–3680

    Article  CAS  Google Scholar 

  71. Svitkina TM (2020) Actin cell cortex: structure and molecular organization. Trends Cell Biol 30:556–565

    Article  CAS  Google Scholar 

  72. Phillips R (2013) Kondev, Jane, Theriot, Julie, Gracia. G. H, Physical Biology of Cell

    Google Scholar 

  73. Fritzsche M, Erlenkämper C, Moeendarbary E, Charras G, Kruse K (2016) Actin kinetics shapes cortical network structure and mechanics. Sci Adv 2:1–13

    Article  Google Scholar 

  74. Chugh P et al (2017) Actin cortex architecture regulates cell surface tension. Nat Cell Biol 19:689–697

    Article  CAS  Google Scholar 

  75. Shutova, M., Yang, C., Vasiliev, J. M. & Svitkina, T. Functions of nonmuscle myosin ii in assembly of the cellular contractile system. PLoS One 7, (2012).

  76. Murrell M, Oakes PW, Lenz M, Gardel ML (2015) Forcing cells into shape: the mechanics of actomyosin contractility. Nat Rev Mol Cell Biol 16:486–498

    Article  CAS  Google Scholar 

  77. Kumar R, Saha S, Sinha B (2019) Cell spread area and traction forces determine myosin-II-based cortex thickness regulation. Biochim Biophys Acta Mol Cell Res. (2019) doi:https://doi.org/10.1016/j.bbamcr.2019.07.011.

  78. Clark AG, Dierkes K, Paluch EK (2013) Monitoring actin cortex thickness in live cells. Biophys J 105:570–580

    Article  CAS  Google Scholar 

  79. Ramanathan SP et al (2015) Cdk1-dependent mitotic enrichment of cortical myosin II promotes cell rounding against confinement. Nat Cell Biol 17:148–159

    Article  CAS  Google Scholar 

  80. Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J (2014) Actin dynamics, architecture, and mechanics in cell motility. Physiol Rev 94:235–263

    Article  CAS  Google Scholar 

  81. Bretscher A, Edwards K, Fehon RG (2002) ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 3:586–599

    Article  CAS  Google Scholar 

  82. Louvet-Vallée S (2000) ERM proteins: From cellular architecture to cell signaling. Biol Cell 92:305–316

    Article  Google Scholar 

  83. Michie, K. A., Bermeister, A., Robertson, N. O., Goodchild, S. C. & Curmi, P. M. G. Two Sides of the Coin: Ezrin/Radixin/Moesin and Merlin Control Membrane Structure and Contact Inhibition. Int. J. Mol. Sci. 20, (2019).

  84. Clucas J, Valderrama F, Bretscher A (2014) ERM proteins in cancer progression. J Cell Sci 127:267–275

    Article  CAS  Google Scholar 

  85. Fehon RG, McClatchey AI, Bretscher A (2010) Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol 11:276–287

    Article  CAS  Google Scholar 

  86. Motor Proteins. in Cell Biology 623–638 (Elsevier, 2017). doi:https://doi.org/10.1016/B978-0-323-34126-4.00036-0.

  87. Dmitrieff S, Nédélec F (2016) Amplification of actin polymerization forces. J Cell Biol 212:763–766

    Article  CAS  Google Scholar 

  88. Apodaca G (2002) Modulation of membrane traffic by mechanical stimuli. Am J Physiol Physiol 282:F179–F190

    Article  Google Scholar 

  89. Masters TA, Pontes B, Viasnoff V, Li Y, Gauthier NC (2013) Plasma membrane tension orchestrates membrane trafficking, cytoskeletal remodeling, and biochemical signaling during phagocytosis. Proc Natl Acad Sci U S A 110:11875–11880

    Article  CAS  Google Scholar 

  90. Raucher D, Sheetz MP (2000) Cell Spreading and Lamellipodial Extension Rate Is Regulated by Membrane Tension. J Cell Biol 148:127–136

    Article  CAS  Google Scholar 

  91. Diz-Muñoz A, Fletcher DA, Weiner OD (2013) Use the force: Membrane tension as an organizer of cell shape and motility. Trends Cell Biol 23:47–53

    Article  Google Scholar 

  92. Saleem M et al (2015) A balance between membrane elasticity and polymerization energy sets the shape of spherical clathrin coats. Nat. Commun. 6, (2015)

  93. Manneville JB et al (2008) COPI coat assembly occurs on liquid-disordered domains and the associated membrane deformations are limited by membrane tension. Proc Natl Acad Sci USA 105:16946–16951

    Article  CAS  Google Scholar 

  94. Goetz R, Lipowsky R (1998) Computer simulations of bilayer membranes: Self-assembly and interfacial tension. J Chem Phys 108:7397–7409

    Article  CAS  Google Scholar 

  95. Schmid F (2013) Fluctuations in lipid bilayers: Are they understood? Biophys Rev Lett 8:1–20

    Article  CAS  Google Scholar 

  96. Sens P, Plastino J (2015) Membrane tension and cytoskeleton organization in cell motility. J Phys Condens Matter 27:273103

    Article  Google Scholar 

  97. Tinevez J-Y et al (2009) Role of cortical tension in bleb growth. Proc Natl Acad Sci USA 106:18581–18586

    Article  CAS  Google Scholar 

  98. Pontes B, Monzo P, Gauthier NC (2017) Membrane tension: a challenging but universal physical parameter in cell biology. Semin Cell Dev Biol 71:30–41

    Article  CAS  Google Scholar 

  99. Kozlov MM, Chernomordik LV (2015) Membrane tension and membrane fusion. Curr Opin Struct Biol 33:61–67

    Article  CAS  Google Scholar 

  100. Helfrich W (1973) Elastic properties of lipid bilayers elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch 28:3–7

    Google Scholar 

  101. Rodríguez-García R et al (2015) Direct cytoskeleton forces cause membrane softening in red blood cells. Biophys J 108:2794–2806

    Article  Google Scholar 

  102. Peukes J, Betz T (2014) Direct measurement of the cortical tension during the growth of membrane blebs. Biophys J 107:1810–1820

    Article  CAS  Google Scholar 

  103. Biswas A, Alex A, Sinha B (2017) Mapping cell membrane fluctuations reveals their active regulation and transient heterogeneities. Biophys J 113:1768–1781

    Article  CAS  Google Scholar 

  104. Gárate F, Pertusa M, Arana Y, Bernal R (2018) Non-invasive neurite mechanics in differentiated PC12 cells. Front Cell Neurosci 12:194

    Article  Google Scholar 

  105. Fournier JB, Ajdari A, Peliti L (2001) Effective-area elasticity and tension of micromanipulated membranes. Phys Rev Lett 86:4970–4973

    Article  CAS  Google Scholar 

  106. Betz T, Sykes C (2012) Time resolved membrane fluctuation spectroscopy. Soft Matter 8:5317

    Article  CAS  Google Scholar 

  107. Shiba H, Noguchi H, Fournier JB (2016) Monte Carlo study of the frame, fluctuation and internal tensions of fluctuating membranes with fixed area. Soft Matter 12:2373–2380

    Article  CAS  Google Scholar 

  108. David F, Leibler S (1991) Vanishing tension of fluctuating membranes. J Phys II(1):959–976

    Google Scholar 

  109. Alert R, Casademunt J, Brugués J, Sens P (2015) Model for probing membrane-cortex adhesion by micropipette aspiration and fluctuation spectroscopy. Biophys J 108:1878–1886

    Article  CAS  Google Scholar 

  110. Hetmanski JHR et al (2019) Membrane tension orchestrates rear retraction in matrix-directed cell migration. Dev Cell 51:460-475.e10

    Article  CAS  Google Scholar 

  111. Shi Z, Graber ZT, Baumgart T, Stone HA, Cohen AE (2018) Cell membranes resist flow. Cell 175:1769-1779.e13

    Article  CAS  Google Scholar 

  112. Lieber AD, Schweitzer Y, Kozlov MM, Keren K (2015) Front-to-rear membrane tension gradient in rapidly moving cells. Biophys J 108:1599–1603

    Article  CAS  Google Scholar 

  113. Batchelder EL et al (2011) Membrane tension regulates motility by controlling lamellipodium organization. PNAS 108:11429–11434

    Article  CAS  Google Scholar 

  114. Watanabe N, Mitchison TJ (2002) Single-molecule speckle analysis of actin filament turnover in lamellipodia. Science (80-) 295:1083–1086

    Article  CAS  Google Scholar 

  115. Vallotton P, Danuser G, Bohnet S, Meister JJ, Verkhovsky AB (2005) Tracking retrograde flow in keratocytes: news from the front. Mol Biol Cell 16:1223–1231

    Article  CAS  Google Scholar 

  116. Theriot JA, Mitchison TJ (1991) Actin microfilament dynamics in locomoting cells. Nature 352:126–131

    Article  CAS  Google Scholar 

  117. McGrath JL, Tardy Y, Dewey CF, Meister JJ, Hartwig JH (1998) Simultaneous measurements of actin filament turnover, filament fraction, and monomer diffusion in endothelial cells. Biophys J 75:2070–2078

    Article  CAS  Google Scholar 

  118. Carlier MF et al (1997) Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol 136:1307–1322

    Article  CAS  Google Scholar 

  119. Carlsson AE (2010) Actin dynamics: From nanoscale to microscale. Ann Rev Biophys 39:91–110

    Article  CAS  Google Scholar 

  120. Lieber AD, Yehudai-Resheff S, Barnhart EL, Theriot JA, Keren K (2013) Membrane tension in rapidly moving cells is determined by cytoskeletal forces. Curr Biol 23:1409–1417

    Article  CAS  Google Scholar 

  121. Schliwa M (1982) Action of cytochalasin d on cytoskeletal networks. J Cell Biol 92:79–91

    Article  CAS  Google Scholar 

  122. Sheetz MP (2001) Cell control by membrane-cytoskeleton adhesion. Nat Rev Mol Cell Biol 2:392–396

    Article  CAS  Google Scholar 

  123. Betz T, Lenz M, Joanny J-F, Sykes CC (2009) ATP-dependent mechanics of red blood cells. PNAS 106:15320–15325

    Article  CAS  Google Scholar 

  124. Raucher D, Sheetz MP (1999) Membrane expansion increases endocytosis rate during mitosis. J Cell Biol 144:497–506

    Article  CAS  Google Scholar 

  125. Faris MDEA et al (2009) Membrane tension lowering induced by protein activity. Phys Rev Lett 102:038102

    Article  Google Scholar 

  126. Girard P, Prost J, Bassereau P (2005) Passive or active fluctuations in membranes containing proteins. Phys Rev Lett 94:088102

    Article  CAS  Google Scholar 

  127. Charras GT, Coughlin M, Mitchison TJ, Mahadevan L (2008) Life and times of a cellular bleb. Biophys J 94:1836–1853

    Article  CAS  Google Scholar 

  128. Kubota HY (1981) Creeping locomotion of the endodermal cells dissociated from gastrulae of the Japanese newt, Cynops pyrrhogaster. Exp Cell Res 133:137–148

    Article  CAS  Google Scholar 

  129. Keller HU (2000) Redundancy of lamellipodia in locomoting Walker carcinosarcoma cells. Cell Motil Cytoskeleton 46:247–256

    Article  CAS  Google Scholar 

  130. Yoshida K, Soldati T (2006) Dissection of amoeboid movement into two mechanically distinct modes. J Cell Sci 119:3833–3844

    Article  CAS  Google Scholar 

  131. Charras G, Paluch E (2008) Blebs lead the way: how to migrate without lamellipodia. Nat Perspect 9:730–736

    CAS  Google Scholar 

  132. Turlier H et al (2016) Equilibrium physics breakdown reveals the active nature of red blood cell flickering. Nat Phys 12:513–520

    Article  CAS  Google Scholar 

  133. Bretou M et al (2014) Cdc42 controls the dilation of the exocytotic fusion pore by regulating membrane tension. Mol Biol Cell 25:3195–3209

    Article  Google Scholar 

  134. Petrie RJ, Koo H, Yamada KM (2014) Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix. Science (80-) 345:1062–1065

    Article  CAS  Google Scholar 

  135. Tabdanov E et al (2020) Engineering T cells to enhance 3D migration through structurally and mechanically complex tumor microenvironments. doi:https://doi.org/10.1101/2020.04.21.051615

  136. Diz-Muñoz A et al (2010) Control of directed cell migration in vivo by membrane-to-cortex attachment. PLoS Biol 8

  137. Liu Y et al (2012) Constitutively active ezrin increases membrane tension, slows migration, and impedes endothelial transmigration of lymphocytes in vivo in mice. Blood 119:445–453

    Article  CAS  Google Scholar 

  138. Rouven Brückner B, Pietuch A, Nehls S, Rother J, Janshoff A (2015) Ezrin is a major regulator of membrane tension in epithelial cells. Sci Rep 5:14700

    Article  Google Scholar 

  139. Bergert M et al (2019) Cell surface mechanics gate stem cell differentiation. 798918. doi:https://doi.org/10.1101/798918.

  140. Paraschiv A, Lagny TJ, Coudrier E, Bassereau P, Šarić A (2020) Influence of membrane-cortex linkers on the extrusion of membrane tubes. https://doi.org/10.1101/2020.07.28.224741.

  141. Gérard A et al (2014) Detection of rare antigen-presenting cells through T cell-intrinsic meandering motility, mediated by Myo1g. Cell 158:492–505

    Article  Google Scholar 

  142. Nambiar R, Mcconnell RE, Tyska MJ (2009) Control of cell membrane tension by myosin-I. PNAS 106:11972–11977

    Article  CAS  Google Scholar 

  143. Thottacherry JJ et al (2018) Mechanochemical feedback control of dynamin independent endocytosis modulates membrane tension in adherent cells. Nat Commun 9:4217

    Article  Google Scholar 

  144. Mercier V et al (2020) Endosomal membrane tension regulates ESCRT-III-dependent intra-lumenal vesicle formation. Nat Cell Biol 22:947–959

    Article  CAS  Google Scholar 

Download references

Acknowledgements

BS acknowledges support from Wellcome Trust/DBT India Alliance fellowship (Grant Number IA/I/13/1/500885), SERB (Grant Number SERV_CRG_2458), and CEFIPRA (Grant Number 6303-1). The authors are grateful to IISER Kolkata and UGC for providing scholarship to AB and RK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bidisha Sinha.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, A., Kumar, R. & Sinha, B. Membrane Homeostasis: The Role of Actin Cytoskeleton. J Indian Inst Sci 101, 81–95 (2021). https://doi.org/10.1007/s41745-020-00217-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-020-00217-x

keywords

Navigation